How Reasoning Evolves from Post-Training Data in
Sequential Domains

Lucas Dionisopoulos Nicklas Majamaki
University of California, San Diego University of California, San Diego
ldionisopoulos@ucsd.edu nma jamaki@ucsd.edu

Prithviraj Ammanabrolu
University of California, San Diego
prithvi@ucsd.edu

Abstract

We study how reasoning evolves in a language model — from supervised fine-
tuning (SFT) to reinforcement learning (RL) — by analyzing how a set of
theoretically-inspired datasets impacts language model performance in a verifi-
able Markov Decision Process (MDP) such as chess. We find that fine-tuning
a model to directly predict the best move leads to effective RL and the strongest
downstream performance — however, the RL stage elicits unfaithful reasoning (rea-
soning inconsistent with the chosen move). Alternatively, training on multi-move
trajectories yields comparable downstream performance with faithful reasoning
and more stable RL. We show that RL induces a substantial positive shift in the
distribution of move quality and reduces hallucination rates as a side effect. Fi-
nally, we find several SFT-checkpoint metrics — metrics spanning evaluation per-
formance, hallucination rates, and reasoning quality — to be predictive of post-RL
model performance. We release checkpoints and final models as well as train-
ing data, evaluations, and code which allowed us to surpass leading open-source
reasoning models in chess with a 7B-parameter model™.

1 Introduction

What is required to train a language model to reason through RL? Several ingredients appear critical
— a strong base model and a compatible domain are sensible starting points. But what is a strong
base model? And once you have a domain, how do you train it to reason effectively?

We seek to address these motivating questions by training a language model to reason in a verifiable,
sequential decision process. Specifically, we choose chess as our focus because of several convenient
elements: intrinsic difficulty for LLMs, established theory, favorable structure (episodic MDP), large
datasets, and an efficient oracle (chess engines) for verifiable rewards and high-quality synthetic data
generation. As a result, we can measure how different training data influences our language model
through SFT and how RL further evolves reasoning from this checkpoint in a controlled setting.

Language-based reasoning [OpenAl, 2074 has emerged as a promising technique to advance lan-
guage model capabilities, although much research remains confined to specific domains such as
math and coding. Reasoning, often characterized as extending a model’s "chain-of-thought" behav-
ior [Weiefall, P027] using methods such as RL, benefits from these domains being clearly verifiable:
the math is correct or the code passes all tests. This verifiable nature — combined with downstream

!'Code and models available at

Preprint.

https://github.com/anonymous-hippopotamus/lang-chess

We scale SFT on our two best datasets
(~50% train tokens from the respective
dataset with the rest being a mix of our
other chess and general instruct datasets)

{ASCII Chess Board} Best Move

What is the best move?

Best Line checkpoints have more stable RL
than Best Move checkpoints —although both
have comparable downstream performance.

Final Model Analysis

[Reasoning about castling and preparing for
king developments]

<answer> good nontrivial (but unrelated) pawn
move </answer>

Reasoning Faithfulness

RL on the Best Move
checkpoint gives us
strong evaluation [

1
1
I
1
1
1
I
1
1
1
N RLTrain - Mean Train Reward | Step
Assistant (SFT on): “Direct Policy 1
ditds Learning” 1
o(ac|se) :
1
1
1
1
1
1
1
1
1
1

performance but
with unfaithful BestLine

reasoning. SFT . AL

BestMove BestLine BestMove+

“Policy & Transition
Dynamics Learnin;

o(Aelsy) T'(s¢, ar)

{ASCII Chess Board}
what are the next 6 plies that would likely
play out? End with an estimate of the

centipawn delta.

. Best Move SFT Checkpoints
leads to more stable

reasoning through RL.

Assistant (SFT on):
e8c8 f3d2 hsge dlel géc2 d2ca [A-21]

O An SFT-checkpoint with
° learned transition dynamics
&N

[Best Line SFT Checkpoints

Figure 1: Following initial data inclusion experiments, we scaled SFT on our two best-performing
datasets. Both resulted in comparably strong final evaluation performance, but training on optimal
move trajectories (Best Line) led to more stable RL and faithful reasoning compared to training on
single best moves (Best Move).

applicability and skill transfer — has stimulated research in these specific domains. As a result, rea-
soning models have achieved profound results across many related benchmarks [OpenAl, 20754,
Anthropid, 2079, Google DeepMind, P075], long-duration tasks [Kwa“ef-all, P(175, METR|, P075],
and even earned an International Math Olympiad gold medal [DeepMind, 20275, OpenAl, 2075].

Although recent work explores reasoning in more subjective domains [Whifehonse ef all, DO75]
through techniques such as "LLM-as-a-judge" [Zheng et all, 2073], we focus here on those that are
verifiable. The core verifiable domains — math and coding — benefit from years of continued research
that has established a corpus of high-quality training data which produces strong out-of-the-box base
model performance. While we benefit from stronger general base models, working on these explored
domains would pose a challenge in isolating the influence of our training interventions.

Chess thus emerges as an attractive domain for studying reasoning. Language models have his-
torically struggled with chess [[Acher, 200773, Dynomight, 2074] and even state-of-the-art reasoning
models still falter — often responding with illegal moves or simple blunders as seen in the August
2025 Kaggle Al Chess Exhibition [Kaggle and Google DeepMind, 2075]. Models underperform
partly because chess data, while abundant, is rarely emphasized in pretraining; further, the game’s
combinatorial structure makes generalization difficult. While this poses a difficulty, access to su-
perhuman verification (in chess engines) provides an efficient method for verifiable rewards and
synthetic data generation. All these features make chess a compelling testbed for reasoning.

Motivated by this setting, we train a 7B-parameter model on custom datasets using both SFT and
RL to achieve performance surpassing gpt-oss-120b [OpenAl, P075K] on several benchmarks. Our
study centers on the following questions which we will address:

e Q1I: How do different datasets (e.g., programmatically generated, synthetic rejection sam-
pling, synthetic from a harness) impact downstream performance after SFT and RL?

* (02: How does RL influence a model’s qualitative behaviors (e.g., move quality distribution,
reasoning strategies used, rate of hallucination)?

* (03: Which SFT-checkpoint metrics are predictive of final RL performance?

We show that focused SFT on predicting a single best move (Best Move) leads to strong performance
but unfaithful reasoning through RL; on the contrary, training on multi-step move trajectories (Best
Line) has more stable RL and faithful reasoning. We find that RL leads to fewer hallucinations and
a substantial positive shift in move quality, and we see that several SFT-checkpoint metrics (both
qualitative and quantitative) are predictive of final RL performance.

Chess Evaluation Performance
0.96

094 0.98
0.54 (I 56 0.58
0.42
0.08

Legal Move Rate Avg Move Rank Avg ToU Accuracy Accuracy
Predict Move edict Move Le; Move Best Move Worst Move

[Llama 4 Maverick [gpt-oss-120b (Medium) Qwen2.5 7B-Instruct Best Move + Best Line (SFT) [Best Move + Best Line (RL)]

Figure 2: Performance of our best reasoning model trained from a Qwen2.5 7B-Instruct base across
our evaluations. Note that trivial performance (i.e., random guessing) is 0.2 for the Best Move and
Worst Move tasks. See Appendix B for example evaluation questions.

2 Related work

2.1 Reasoning in language models

Reasoning in causal language models can be interpreted as self-guided search that makes a task more
tractable. Consider a numerical math problem: effective reasoning should increase the probability
of producing the correct number more than if the model had immediately predicted the final answer.
Note that this reasoning need not be wholly interpretable — for example, it can exist in continuous
space [Hao“efall, 2074] or shift between languages [DeepSeek-Al et all, 2025] — what ultimately
matters is that the intermediate steps are beneficial to the model. For this work we will focus on
language-based reasoning.

The era of reasoning models, notably initiated with OpenAlI’s release of ol [OpenAl, 2024], builds
upon much prior work in self-guided in-context adaptation. Models, when told to work "step by step"
and write down intermediate results on a "scratchpad" [Nye et all, Z0Z1], saw performance improve-
ment on multi-step computations — this result was reinforced at scale and termed "chain-of-thought"
in later work [Weief all, P027]. Further, these reasoning traces can be used for iterated improve-
ment through fine-tuning on successful generations as evidenced by STaR [Zelikman_ef-all, DO77].
Quiet-STaR [Zelikman ef all, 2074 extended this from fine-tuning by using a reinforcement learning
policy-gradient update in REINFORCE [Williamsd, T997] over tokens influenced by intermediate rea-
soning steps. This iterated bootstrapping using reinforcement learning for policy-gradient updates
has been the primary underlying method fueling the latest developments in reasoning models.

Following OpenAT’s release of ol, many leading systems began incorporating similar reasoning
techniques to improve performance. Notably, DeepSeek-R1 [DeepSeek-Al et all, 2075] and Kimi
k1.5 [Kimi“Team ef all, P075] were among the first reasoning models to effectively approach state-
of-the-art ability and publicize the underlying training methods.

2.2 Reasoning through RL

While there exist several effective methods for training models to reason such as in-context prompt-
ing [Weriefall, 20727, Kojima et all, 2023], model distillation [DeepSeek-Al et all, Z025], or SFT on
successful outputs [Zelikman_ef-all, 2027, [Yuan_ef all, P073], we focus our attention on the setting
of applying RL to improve model reasoning.

RL has been used as an effective tool to guide model behavior with [P027] inciting the
viral ChatGPT moment that brought language models to public attention. Successful RL —regardless
of the setting — requires valuable reward signals; for language models these rewards can be generated
using the following methods: rewards can be parsed and automatically calculated in verifiable tasks
[Shaa ef-all, 2074], determined directly through human judgment [Christiano ef all, POT7], scored
with a learned reward model [Ouyang et all, P027], or elicited using a language model as a judge
[Whifehonse ef all, Z075]. Rewards can be generated for the entire outcome or at intermediate steps
[Cightman et all, P073], and learned value functions can approximate credit-assignment at the token-
level [Schulman_ef-all, POT7] or reward can be indiscriminately applied over a full sequence [Shad
efall, 2074]]. While this covers many methods in RL for language models, it is not exhaustive.

A common family of algorithms used in RL for language models is Proximal Policy Optimization
(PPO) [Schulman_efall, Z0T7] — an actor-critic method. Because actor-critic methods require learn-
ing a value function to address the credit-assignment problem (which can be computationally expen-
sive and experience instability), new methods such as Group Relative Policy Optimization (GRPO)
[Shao“ef-all, 2024, DeepSeek-Al et all, P075] have emerged to remove this learned value function
requirement. GRPO has further evolved through variants such as Dr. GRPO [Ciuefall, 2025], which
removes sequence-level length normalization, and DAPO [[Yn_ef-all, P(175], which removes the KL
penalty, increases the clipping bound to encourage exploration, and addresses length normalization
issues observed in GRPO.

2.3 Chess engines

Computer scientists have developed grandmaster-level chess systems built on three notable tech-
niques: 1) Classical search-based engines such as IBM Deep Blue [Campbell et all, 2002] or Stock-
fish that use a minimax-based search algorithm (commonly alpha-beta pruning), 2) neural search-
based systems such as AlphaZero [Silverefall, POT7] and its open-source implementation in Leela
Chess Zero that learn policy functions through RL self-play combined with Monte Carlo Tree Search,
and 3) searchless neural systems such as Google DeepMind’s chess transformer that predicts a move
directly from a board state [Ruoss_ef all, 2024]. The respective 40/15 Elo scores of Stockfish and
Leela Chess Zero as of August 8, 2025 are 3645 and 3444 [Computer Chess Rating Listd, Z075],
and DeepMind’s chess transformer reached a Lichess blitz Elo of 2895 [Ruossefall, 2024]. While it
is worth noting that recent versions of Stockfish use neural networks to estimate the value of board
states — it still largely employs the same core algorithm used by classical search-based engines.

As discussed previously, language models struggle in the domain of chess. However, it is worth
mentioning gpt-3.5-turbo-instruct which has an estimated Elo around 1700 [Ached, P073]. While
this anomaly is interesting, this performance isn’t from language-based reasoning — rather it is direct
next move prediction (i.e., only outputs the move to play). Google DeepMind’s chess transformer
validated that a 270 million parameter transformer is capable of reaching grandmaster-level chess
without search (this was achieved by learning a value function, though a policy function was also
tested). As far as the authors are aware, no language model has achieved competitive-strength chess
ability through language-guided reasoning and the best reasoning model in chess is OpenAl 03
which won the 2025 Kaggle AI Chess Exhibition [Kaggle and Google DeepMind, Z075].

3 Background

Our analysis is focused on the Qwen2.5-7B-Instruct model [Owen et all, PZ075]. Given the baseline
model has insufficient ability, we first conducted SFT prior to the RL stage. We began with a full
set of data inclusion studies — from SFT to RL — to determine the most effective recipe before doing
a final, scaled training run on our leading mix.

3.1 Board and move representation

For all training and evaluation we provide the board state in a visual ASCII-format. We ran prelim-
inary tests on several board formats including Forsyth-Edwards Notation (FEN), FEN with space
delimiters, and a visual ASCII-format. While these showed similar quantitative performance, we
opted for the visual format following subjective qualitative analysis. Appendix & provides exam-
ples of the considered board states and discusses tokenization limitations in each. Note that our
board representation omits move repetitions due to dataset limitations. However, since no evalua-
tion incorporates repetitions, we interpret the environment as an MDP.

For move representation, we follow DeepMind’s chess transformer [Ruossefall, 2074] and represent
all moves in Universal Chess Interface (UCI) format (e.g., e1le2). This decision was made in lieu of
formats such as Standard Algebraic Notation (SAN) which may be more commonly represented in
training data — SAN has intricacies that could evoke errors avoidable by using UCI notation.

- Can your bishop take their pawn {'Yes', I'm thinking about playing g7ge. Do you think I should what are the next 6 plies that would

‘No’}? play this move? likely play out? End with an estimate
can you legally play dsg2 {'Yes', 'No’}? of the centipawn delta.

- How many legal moves does your knight at

c3 have (answer with an integer)?

My piece on __ could take the opponent's
pawn on d6 (answer with square of only Verdict: g7gé is a suboptimal choice..
piece that makes this statement true --

e.g., ‘ed').

Assistant:
Moving the g-pawn to g6 looks harmless but immediately

lets white eliminate the isolated a-pawn... Assistant

e8c8 f3d2 h5g6 dlel g6c2 d2c4 [A-21]

Assistant:
No Yes 4 ds Think through the provided position to play the best possible move

Assistant:
...Let's think through white knight captures the pawn on e5 (f3es) [v+787]. No, I don't like this
direction [mm-464].

How about we analyze the line starting with white rook moves to el (flel) [v+718]?

| A smart move from them could be black pawn moves to f5 (f6f5) [v+3]

| | We could consider following with white knight moves to d5 (c3ds) [v+4]. Instead we could move
white pawn captures the pawn on f5 (e4f5) [v+4]. OF all of these, we should play white knight
moves to d5 (c3d5) [mm+d].

The position after this appears essentially balanced [mms+4]...

What is the best move?

Assistant:
dads

Figure 3: Samples from a selection of the custom datasets. The gray font represents an abbreviation
of the core prompt — in all samples the model is trained with a verbose instructive prompt and
provided with a board in our visual ASCII-format. Full samples are included in Appendix O.

3.2 Evaluations and RL environment

We created four custom tasks that we use for evaluations and the RL training environment. For the
Predict Move task, we provide a board and ask the model to play the best move — no list of legal
moves is provided. We measure both the ratio of legal moves generated as well as the move quality
for legal moves provided. Move quality is measured as the normalized rank among legal moves
(€ [0, 1]) as determined by a chess engine — where the best move is given a score of 1 and the worst
move a score of 0. For the Best Move and Worst Move tasks, we provide a board and a set of 5
moves. The task is to choose the best move (and worst move, respectively) of the candidate moves
provided. For both tasks, candidate moves are sampled such that there is a threshold of move quality
(determined by a chess engine) separating the correct answer from other candidates. Finally, the
Legal Moves task asks the model to, for a given board and piece, list out all the legal moves that
piece can make. Results are computed as intersection over union (IoU) versus the ground truth. We
provide example questions in Appendix Bl.

3.3 Datasets

We created several theoretically-inspired datasets to study training dynamics from SFT to RL. Con-
sider that chess can be represented as an MDP. At time ¢ there is a state s; € S and playing a ply
(i.e., half-move) from the player’s perspective constitutes an action a; € A(s;). We abstract the
opponent’s move to the environment, viewing a state transition as s;y1 ~ T (8¢, a¢). Additionally,
for each board state-action pair there is a reward r; = R(s¢, a;) which we can approximate using a
shaped dense reward (centipawn delta, i.e., the change in an engine’s board evaluation measured in
hundredths of a pawn) from a chess engine: 7; = 7 Vengine (S¢+1) — Vengine (5¢) With v = 1. We will
use this formulation to discuss motivation for several of our custom datasets.

We provide a brief description of each dataset and will further elaborate on data design and mo-
tivation within the context of experimental results in Section B. We include detailed explanations
of each dataset and full examples in Appendix 00 — abbreviated examples are included in Figure B.
Regarding our datasets, we organize them into the following four categories:

* General Instruction Following: Specifically, Magpie Llama 3.3 70B [Xuefall, 2074].

* Rejection Sampling: We generate outputs from Llama 4 Maverick [Mefa AT, P025] on our
four evaluation types. We chose Llama 4 Maverick for qualitative and quantitative perfor-
mance, retaining samples from the Best Move and Worst Move evaluations if correct and
keeping outputs from the Legal Moves and Predict Move evaluations if above a threshold.

* Guided Synthetic: We prompt Llama 4 Maverick and gpt-oss-120b with a programmati-
cally generated harness. Specifically, we provide a beginning board, 5 plies (the first ply
being a move candidate and following plies being optimal play from a chess engine), and
the ending board state. The task is to generate an explanation of how the proposed candi-
date move will play out, ending with a final verdict for the proposed move.

* Programmatically Generated Data:

— Factual Board Answering: We build on top of a chess engine to generate simple
question-answer (QA) pairs for a given board. These questions may ask if a move is
legal, which square is threatening a specific piece, or how many legal moves a piece
has. We combine multiple QA pairs for each sample.

— Verbalized Alpha-Beta Pruning: We use a custom program built upon Stockfish
to sample moves, rollout the line of play for each move (with branching and board
values), and verbalize rollouts and minimax decisions in natural language. We explic-
itly build in tree search reasoning strategies and sample poor moves to verbalize the
process of pruning, and we leverage a large, custom prompt bank to add diversity to
natural language outputs.

— Best Move: Given a board, immediately predict the best move in UCI notation.

— Best Line: Given a board, predict the optimal line of play (4 — 6 plies) ending with
the expected centipawn delta from playing this line.

3.4 Training environment

All SFT is conducted using LlamaFactory [Zheng et all, 7024 and all RL is conducted using veRL
[Sheng et all, PO075]. We utilize Dr. GRPO [LCiu_ef-all, PO75] for our RL optimization algorithm
and employ the Clip-Higher strategy with no KL divergence per Yu_ef-all [2025]. A full list of
hyperparameters for both SFT and RL are included in Appendix H.

4 Key findings

We ran a series of inclusion analyses to understand the efficacy of each data type and scaled our best-
performing recipes. Figure D highlights the performance of our best reasoning model. We found the
Best Move and Best Line datasets to be most effective — especially when lightly supplemented with
our other, less effective datasets. Our scaled runs build off of the Best Move - All and Best Line -
All datasets that use this dataset diversity. The best final performance was achieved by first training
Qwen2.5 7B-Instruct on 60 million tokens (Best Move - All data) followed with 60 million tokens
(Best Line - All data). Appendix O provides further detail on our experiments.

4.1 Q1: How do different datasets impact downstream performance after SFT and RL?
Multitask training is beneficial for a fixed token budget, yielding higher move quality, less reward

hacking, and a generally more robust model. This is shown by a comparison between Rejection
Sampling (Predict Move) and Rejection Sampling (All Evals): for the former we SFT and conduct

AV ar ' ~ v =ZAa! MV

LAY I~ v o o
A VA . N A
N Y / A
PRDNANY /
f 'e®
il
.
ste,
o 7’ RL Evaluation - Predict Move RL Evaluation - Legal Moves
AAT - e
M ke P P p 7 /\/
/ e
300 N
B\ n P v
- Wi\ ST R
(Best Move Best Line @ Best Move + Best Line)

Figure 4: RL training performance on our scaled SFT-checkpoints. Left: Train reward and tokens
per response (smoothed using an exponential moving average with decay factor 0.9). Right: Reward
on the held-out evaluation set during training. The Best Move dataset, while having strong ending
performance, experienced more unstable RL compared to scaled runs trained on Best Line data.

Inclusion Analysis Experiments — Final RL Model Performance on Evaluations

0.7

1

1

1

1

1

1

|
0.8 loa

|

: 03
0.7 |

;02

I
0.6 101

1

|

Legal Move Rate (T) Avg Move Rank (T) Trivi lal Move Rate o) A\g Score (1)
edict Move dict M | Other Evals

Rejection Sampling (Predict Move) B Rejection Sampling (4// Evals) Guided Synthetic Factual Board Answering

Verbalized Alpha-Beta Pruning Best Move Best Line Best Move — All Data B Best Line — All Data

Figure 5: Evaluation results for final RL models from each data inclusion experiment. Within each
metric we split results into three sections: (left) compares single vs. multitask, (middle) compares
the targeted data inclusion experiments, (right) covers our data diversity experiments. Note that in
all experiments we SFT on 15 million tokens and do RL on 8k samples. In the single task setting,
RL only uses the Predict Move task; in all other settings the 8k samples are split evenly between our
four task types. See Appendix I for detailed results (including exact token distributions).

RL on only the Predict Move task — for the latter we use all tasks. Our experimental results (Figure
B) led to these takeaways. We incorporate multitask training in all following experiments.

The most effective datasets were dense with difficult, high-quality tokens. Consider the Factual
Board Answering dataset: we designed this dataset to sample multiple QA pairs from a set of custom
generators built atop a chess engine. The motivation is to force the model to embed complex board
understanding in its latent layers through these immediate (often 1 token) responses; however, we
find this dataset’s performance comparable to our initial Rejection Sampling (All Evals) experiment.
That is, latent board understanding did not result in a better reasoning model. If we compare this
with a similarly dense task in Best Move (predict the best move directly) or Best Line (generate the
optimal line of play), we see that performance is better when training on the latter datasets (Figure
B). Intuitively, these more difficult tasks require the model to develop a richer latent understanding
(e.g., playing the best move inherently requires board understanding).

Dataset diversity remains valuable. We see that the All Data experiments for Best Line and Best
Move are superior to their focused counterparts (Figure H). For these runs, we SFT on nearly all
our data types — this comes despite mixed results on several of the individual inclusion analyses.
Notably, the Verbalized Alpha-Beta Pruning experiment showed it was detrimental for training — we
created this dataset as it is hallucination-free and includes rollouts and value functions (instilling
V(st) and T (s¢, at)). However, it possesses a lower density of high-quality tokens (moves and
valuations) and is surrounded by memorizable prompts. The Guided Synthetic dataset produced
mixed performance as well, although we will discuss unique results from this dataset in the following
section. Regardless, limited inclusion of all data (even marginal datasets) was found to be beneficial.

Best Line had more stable RL training than Best Move. Figure B outlines RL training performance
for our scaled runs — the models fine-tuned on Best Line data had more stable training dynamics.
One reason may be that training on Best Line data — which includes multiple moves and ends with
a valuation — allows the model to learn a world model for chess (both a value function V' (s;) and
transition dynamics 7 (s, a¢)). This is further supported by the coming discussion on reasoning
faithfulness that reinforces this stability observation.

4.2 Q2: How does RL influence a model’s qualitative behaviors?

Multi-step trajectory data led to the most faithful reasoners. Note that we measure faithfulness
with gpt-oss-120b judging alignment of final answers with reasoning traces. Our primary multi-
step trajectory datasets are Guided Synthetic and Best Line — they both incorporate a rollout (in
natural language and UCI, resp.) followed by a valuation (in natural language and as a centipawn
delta, resp.). This structure can be viewed as approximating n-step bootstrapping with n = 2 or 3
depending on ply depth. We can contrast this with the Best Move dataset which approximates a direct

Reasoning Faithfulness Hallucination Rate

Inclusion Analyses | Scaled Runs Baselines Scaled Runs
100 1.0
8.33 0.82
7.26 7.03
50 371 0.5 0.41
2.87
1.92
l I 0.10 0.11 0.10 0.08
00 . 00 - | -
Guided Average- Average - Best Move Best Line Best Move + Qwen2.5 Llamad4 gpt-oss-120b Best Move BestLine Best Move +
Synthetic Best Move Best Line Best Line 7B-Instruct Maverick (Medium) Best Line
Best Move + Best Line Move Quality Distribution 222
g 200 093 |
Baseline 2 v 1
aseine S Median 1
1
SFT g H
=]
= 100
. RL = 28 6
E 8 5 8 9 15 16 18 .
0 — — — — - - - [|
0.0-0.1 0.1-0.2 0.2-0.3 0.3-04 04-05 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Move Rank

Figure 6: Key results highlighting how RL influenced our SFT-checkpoints. Top left: RL on the
Best Move SFT-checkpoint induced unfaithful reasoning whereas checkpoints trained on multi-step
data were more robust. Top right: RL drove a meaningful decrease in hallucination rate as a side
effect of simply maximizing reward on our evaluations. Bottom: Our Best Move + Best Line scaled
run saw a significant distribution shift after RL in its move quality on the Predict Move evaluation
(n = 400). This shift is an improvement on both an absolute and relative basis, highlighting the
efficacy of RL. Appendix [has further detail on our reasoning quality measurement and Appendix
B outlines hallucinations.

policy function (i.e., learning g (a;|s;) via behavior cloning). Our multi-step trajectory checkpoints
largely retained faithful reasoning through RL — on the other hand, the Best Move dataset became
an unfaithful reasoner through RL, often displaying final, nontrivial answers that were disconnected
from its reasoning trace. Appendix O provides further detail on the reasoning quality measurement
and includes an unfaithful reasoning example.

This is interesting as the unfaithful reasoner improves through RL without defaulting to trivial moves.
As discussed in Section I, what ultimately matters is that intermediate steps benefit the model.
Further, this improved ability is not explained by longer generations (Figure B). One possible expla-
nation we offer is the following: faithful reasoning from multi-step data may arise due to the model
internalizing a chess world model (transition and value functions), whereas unfaithful reasoning may
result from strong latent capability mixed with weak verbalized reasoning ability.

Regardless of reasoning faithfulness, RL drove a substantial positive shift in move quality played
(Figure B). Not only does RL improve the frequency of the best moves being played but it also
decreased the frequency of low quality moves on an absolute and relative basis. Additionally, RL
reduces the rate of hallucinations within reasoning traces (Figure B). This result is a side effect
of rewarding correct answers as we do not incentivize factuality — we provide further detail on
hallucinations in Appendix B and show that this result is shared across all data inclusion experiments.

Lastly, we analyzed reasoning strategy usage at both the SFT and RL model stages. This follows
prior work [Gandhiefall, PO79, Zeng et all, Z075] showing that effective reasoning models tended to
utilize more reasoning strategies. We did not see clear trends in our analysis apart from our weaker
models — specifically those more prone to reward hacking — almost exclusively reducing the usage
of reasoning strategies through RL. In contrast, stronger models had mixed usage trends. We defer
to Appendix B for further detail.

4.3 Q3: Which SFT-checkpoint metrics are predictive of final RL performance?

Finally, we conducted a simple linear regression analysis comparing metrics from the SFT-
checkpoint with the final RL model’s performance (average over all evaluations). Figure [highlights
three SFT-checkpoint metrics that are statistically significant predictors of downstream performance.

08 | R:0.773 RZ: 0.699 0

P-value: 1.569¢-6

Slope (£95% CI): 2.921 (20.840) -
-

23

R20.349
P-Value: 1.551e-5 P-Value: 0.010
Slope (£95% CT): 1.415 (+0.492) - Slope (£95% CT): 0.197 (+0.143)

=
3

0.7

o
>
\

0.6 -

o
o
\

Avg. Score - All Evals (RL)
)
4
\
\
Avg. Score - All Evals (RL)
\

o
S
\
\

Avg. Score - All Evals (RL)
\
\

034 036 038 040 042 044 046 035 0.40 045 0.50

; 5.0 52 54 5.6 5.8
Avg. Score - All Evals (SFT) Acc. of Referenced Moves (SFT)

Avg. Reasoning Quality out of 10 (SFT)

Figure 7: Linear regression comparing the final RL model (average score over all evaluations) with
various metrics from its corresponding SFT-checkpoint. Left: Vs. average score over all evaluations.
Middle: Vs. percent of moves referenced during reasoning trace that are legal (parsed by Llama
4 Maverick). Right: Vs. reasoning quality (mean over all reasoning quality metrics as judged by
gpt-0ss-120b). Shaded region represents the 95% confidence intervals.

Some of this is expected — an SFT model that scores higher on evaluations is likely better suited
for RL. However, we find that more qualitative signals (specifically, referenced move accuracy and
reasoning quality) are also predictive of downstream performance. This shows that an effective SFT-
checkpoint is one that is truthful (low hallucination rate), already an effective reasoner, and exhibits
strong performance in the domain of focus.

5 Limitations & further discussion

To begin, the intention of this work has always been to study general reasoning properties in lan-
guage models. Thus, while the final evaluation of our model is a welcome result, we focused much
of our effort on understanding the qualities and development of reasoning; this means that there
are many methods we believe could further improve a chess reasoning model beyond our final RL
model. For example, in full-game play our final RL model had poor performance against OpenAl
03. We suspect distribution mismatch: training emphasized mid- and late-game positions to reduce
trivial moves, which likely degraded opening play and hurt head-to-head results versus an opponent
with stronger opening theory.

We also have identified several unexplored techniques that could further improve our final RL model.
We minimally experimented with reward function tuning in our RL environment and expect focused
effort could improve performance — particularly on the Predict Move task. Further, incorporating
multi-turn RL and chess puzzles could yield further improvement as these settings more closely
mimic a full chess game.

Additionally, we would like to highlight several limitations to this work. We acknowledge that our
experiments were confined to Qwen2.5 7B-Instruct — while it would have been valuable to replicate
on distinct base models, due to constraints this was not pursued. Additionally, we chose gpt-oss-
120b as our comparator because, in tests against Kimi K2 and DeepSeek-R1-0528, it showed state-
of-the-art open-source performance and was more convenient to run with our available resources.

6 Conclusion

We conduct a detailed study of how various custom datasets influence training dynamics through
SFT and RL in the domain of chess. Our analysis highlights that training to predict the best move
directly produces strong downstream performance but comes with unfaithful reasoning. Instead,
training on multi-move trajectories delivers similar performance with faithful reasoning. We find
that RL leads to fewer hallucinations and a substantial positive shift in move quality, and we see
that several SFT-checkpoint metrics (both qualitative and quantitative) are predictive of final RL
performance. We publish all code and data, as well as scaled SFT-checkpoints and RL models.

Acknowledgments and Disclosure of Funding

We thank Christopher Cui for feedback during the revision process as well as Manas Mulpuri, Sree
Nadella, and Luke Mitbo for contributions on an earlier related study.

References

Mathieu Acher. Debunking the chessboard: Confronting gpts against chess engines to es-
timate elo ratings and assess legal move abilities. https://blog.mathieuacher.com/
GPTsChessEloRatingLegalloves/|, September 2023. Blog post by Professor Mathieu Acher
on variability in GPT chess performance.

Anthropic. Introducing claude 4, May 2025. URL https://www.anthropic.com/news/
cTande=4. Accessed: 2025-08-15.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelligence, 134
(1):57-83, 2002. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)00129-1. URL
https://www.sciencedirect.com/science/article/pii/S0004370201001291.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2017. URL https://arxiv.org/abs/1706.
03741

Computer Chess Rating Lists. Ccrl 40/15 rating list, 2025. URL https://computerchess.org.
uk/ccrl/4040/index.htmll. Accessed: 2025-08-13.

DeepMind. Advanced version of gemini with deep think officially achieves gold-medal standard at
the international mathematical olympiad, July 2025. Accessed: 2025-08-15.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqgi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Dynomight. Something weird is happening with 1lms and chess. https://dynomight.net/
chess/, November 2024. Blog post; exact publication date unspecified, referenced as November
14, 2024.

10

https://blog.mathieuacher.com/GPTsChessEloRatingLegalMoves/
https://blog.mathieuacher.com/GPTsChessEloRatingLegalMoves/
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://computerchess.org.uk/ccrl/4040/index.html
https://computerchess.org.uk/ccrl/4040/index.html
https://arxiv.org/abs/2501.12948
https://dynomight.net/chess/
https://dynomight.net/chess/

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025.
URL https://arxiv.org/abs/2503.01307.

Google DeepMind. Gemini model thinking updates: Gemini 2.5 thinking,
March 2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking. Accessed:
2025-08-15.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.067689.

Kaggle and Google DeepMind. Introducing kaggle game arena. https://www.kaggle.com/
blog/introducing-game-arena, August 2025. Blog announcement of a new benchmarking
platform where Al models compete in strategic games.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
1lms. arXiv preprint arXiv:2501.12599, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.11916.

Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
Megan Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du,
Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David
Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and Lawrence
Chan. Measuring ai ability to complete long tasks, 2025. URL https://arxiv.org/abs/2503.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Meta Al. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, April
2025. URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/. Ac-
cessed: 2025-08-13.

METR. Details about metr’s evaluation of openai gpt-5. https://metr.github.io/
autonomy-evals-guide/gpt-5-report/, August 2025. Accessed: 2025-08-15.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URL https://arxiv.org/abs/2112.00114.

OpenAl Learning to reason with Illms. https://openai.com/index/
learning-to-reason-with-I11ms/|, September 2024. Blog release, September 12 2024.

OpenAl Introducing gpt-5, August 2025a. URL https://openai.com/index/
introducing-gpt-5/. Accessed: 2025-08-15.

OpenAl Introducing gpt-oss, August 2025b. URL https://openai.com/index/
introducing-gpt-oss/. Accessed: 2025-08-13.

11

https://arxiv.org/abs/2503.01307
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://www.kaggle.com/blog/introducing-game-arena
https://www.kaggle.com/blog/introducing-game-arena
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://metr.github.io/autonomy-evals-guide/gpt-5-report/
https://metr.github.io/autonomy-evals-guide/gpt-5-report/
https://arxiv.org/abs/2112.00114
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/

OpenAl. We achieved gold medal-level performance on the 2025 International Mathemati-
cal Olympiad with a general-purpose reasoning LLM! https://x.com/OpenAI/status/
19465949789451458746, July 2025. Tweet.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
Catt, John Reid, and Tim Genewein. Grandmaster-level chess without search. CoRR, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys 25, page 12791297. ACM,
March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/3689031.
364Y60/H

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 2nd edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html,

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2505.10320.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229-256, 1992. doi: 10.1007/BF00992696.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing

12

https://x.com/OpenAI/status/1946594928945148246
https://x.com/OpenAI/status/1946594928945148246
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/1712.01815
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2505.10320
https://arxiv.org/abs/2505.10320
https://arxiv.org/abs/2406.08464

Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo:
An open-source 1lm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and

Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models, 2024. URL
https://arxiv.org/abs/2403.13372.

13

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2403.13372

A Board format

We tested various board representation formats — the three formats shown in Figure B had similar
initial evaluation performance on a baseline Qwen2.5 model. However, upon qualitative analysis
Visual (ASCII) format was ultimately chosen. Additional rationale and comments on each are listed
below:

* FEN: The tokenizer combines specific characters (e.g., \n, RK, PPP) and this may limit
generalization. Additionally, uneven tokenization across rows may hinder spatial under-
standing.

» Spaced FEN: While this format resolves combined character issues, there is an inconsistent
representation of spaces — ’ 2’ is two tokens while > p’ is one token. This may present
issues in downstream spatial understanding.

* Visual (ASCII): Ultimately chosen because it alleviates concerns mentioned in Spaced
FEN.

Note: We recommend that future practitioners alter the Visual (ASCII) format. Qwen-series (2 and
3) and Llama-series (3 and 4) tokenizers treat ° . \n’ as a single token with > p\n’ as two tokens
— this can be fixed by including a space before each newline. This inconsistency was discovered late
in training and thus not integrated into our project. We include an updated un< form_visual board
format in our released code that improves upon Visual (ASCII).

Forsyth-Edwards Notation (FEN)
02000 »000@®0N0e080 0080000080 BORO® - 00006
Spaced FEN

@02@00 /) C0®080900 H ©08®
QPO @ O%(E’FOO DON: QPOQP PO®OO®X

Note: Tokenization shown on two rows for visual purposes.

00000005070
00500 88806

Visual (ASCII)

(.)
0‘ Visual (ASCIT) Format
“ 8l r..q..k.
6l p . .bN.p
e lo AR
(p) al . . . P ..
O 30 .. .P ...
(P 2l PPP .. .PP
(1| R . RK .
1 R ABCDEFGH
2) - It is Black’s turn to move.
(A B) C) ‘ - No castling rights available.
o - - No en passant target square.
- - — - Halfmove clock: @
PN — « N
U@f“ ‘37313"’9\ - Fullmove number: 16
No)(cast‘(r‘i > - J

2\ @€
lalf)(move)(clocl(/»@

) (P ove) Cnunoen OO

Figure 8: Visualized tokenization of three candidate board formats using the Qwen2.5 tokenizer.

14

B Evaluation samples

Figure B contains an example of each evaluation type for the displayed board.

Below is a board in a game you're currently playing.
8 . .kr.b.r

7| .ppb. .pp

6l p.n.p.q.

51 .. . pp

4 PP .P . P

3] ..P.BNP

2| N . P

1l R. . Q. RK

ABCDEFGH

- It
- No
- No

is White’s turn to move.
castling rights available.
en passant target square.

- Halfmove clock: ©

- Fullmove number: 15

.

Predict Move

Q: “Determine the best move from this position and return it within answer tags.”
A: {'b4b5': 0.745, 'd4e5': 0.609, 'f4f5°: ...). get(parsed _answer, IllegalMoveError())

Best Move

\

Q: “You must choose the best move from the following moves: ['a4a5', 'g1hl', 'd1b3', 'b4b5', 'ala2']. ”
A: b4b5

Worst Move

\

Q: “You must choose the worst move from the following moves: ['glf2', 'a4a$', 'd1¢c2', 'd1bl', 'f4f5'].
A:dlc2

Legal Moves

Q: “You must provide a list of all legal moves for the white rook at al.”
A: [Jalbl, alcl, ala2, ala3]

Figure 9: Example questions for each evaluation task on the same board. Note that in actual prompts
(omitted in the figure) we include information related to the required format for valid parsing.

15

C Dataset types and samples

‘We now outline more detail on the format and creation of our datasets.

For General Text Alignment, we use samples from the Magpie Xuef-all [?074] Llama 3.3 70B
dataset as a means of regularization. Given that a significant portion of the SFT data is dense in
chess notation, we felt it valuable to maintain the instruction-following abilities of our trained model
to prevent performance collapse.

Our Rejection Sampling data comprises of four separate tasks, Best Move, Worst Move, Predict
Move, and Legal Moves. We chose to use Llama 4 Maverick to generate synthetic rejection-
sampled data as it offered strong performance, was efficient to run on our hardware, and offered
more natural-sounding reasoning compared to other reasoning models. Our motivation for this
dataset was to instill correct reasoning format and bake in ability from the teacher model given
Qwen2.5 7B-Instruct had incredibly poor base performance. This motivation follows [Ynan ef all
[2023] which found rejection sampling fine-tuning to be highly effective for improving weaker mod-
els.

For each evaluation set, we sampled outputs from Llama 4 Maverick [Mefa AT, D(075] — retaining
answers that were correct on Best Move and Worst Move and keeping outputs on Predict Move
and Legal Moves if the answers met a threshold. This data was further sampled to ensure a desir-
able distribution regarding move count and piece types, as rejection sampling inherently shifts the
distribution towards board states that the data-generating model performs well on.

p
Rejection Sampling (Predict Move) Sample:

Assistant (SFT):

<think>

First, let's analyze the given position:
The current state of the board is:

8l rn.q.bnr

It's Black's turn. We need to assess the position carefully.

The first observation is that Black's king is somewhat exposed on e7, and there's no clear indication that it's
going to castle soon since the kingside pieces haven't moved much. However, we also see that White's king is
still in the center and hasn't castled yet, although it has the right to castle queenside.

A straightforward plan involves moving the f8 rook into play or preparing to develop other pieces effectively.
Looking closely at possible moves, "g7g6" appears too passive without directly contributing to rapid
development or attacking play. Let's evaluate more active options like knight moves or pushing central pawns

when feasible.

However, upon closer inspection, I notice that "b8c6 develops a piece, supports potential central pushes
(*d7d5™), and doesn't overly expose Black. It's a solid developmental move.

Another consideration is assessing whether there are direct attacks or tactical shots available. For instance,
checking if any of White's under-developed status leaves them open to tactics.

Upon deeper review, I believe "b8c6" fits well because it develops a piece harmoniously and gets ready for
further actions such as controlling the center or supporting potential breaks.

</think>
<answer> b8c6 </answer>
.

J

Figure 10: A Rejection Sampling example. The full response in the sample is shortened for space.
Note that a drawback of this dataset is that it is prone to hallucinations as is shown in the provided
sample.

To construct our Guided Synthetic data, we generate synthetic data by using a sufficiently strong
teacher model to verbalize outcomes of a move. A teacher model (Llama 4 Maverick or OpenAl
gpt-oss-120b) is provided with a beginning board state, line of up to 5 total plies (where all plies
following the first move are the top suggested chess-engine move), and an ending board state. The
model is tasked with verbalizing the merit of the proposed ply — first providing logic then a verdict
on the candidate move’s quality (given how the board would develop).

In the MDP setting, this can be interpreted as verbalizing n-step bootstrapping [Suffon_and Barfd,
DOTS] with n = 3 (given 5 plies yields 3 player actions). This is due to a verbalized transition
function in the logic (outlining how the board will develop — 7 (s¢,a;)) combined with a verbal-

16

ized value function (V' (s;)) in the verdict. The intention of the harness is multifaceted — ideally
it should reduce hallucination rate while also guiding the model to generate this verbalized n-step
bootstrapping format with meaningful rationales and verdicts.

p
Guided Synthetic Sample:

User:
Below is a board in a game I'm currently playing.

ABCDEFGH

- It is Black’s turn to move.

- No castling rights available.
- No en passant target square.
Halfmove clock: @

Fullmove number: 18

=]

'm thinking about playing g7g6. Do you think I should play this move?

Assistant (SFT):

Moving the g-pawn to g6 looks harmless but immediately lets White eliminate the isolated
a-pawn withb3xa4. Black recovers only by shuffling the queen to a7 and the c8-bishop to d7,
gaining modest development while staying a pawn down. The pawn push also weakens the
dark-square complex around the king (g6/f5) and does nothing to address White’s central
pressure on d5/e4. Overall the 1line 1leaves Black with 1less material and no clear
compensation - a clear downside.

Verdict: g7g6 is a suboptimal choice; avoid it in favor of a move that keeps the a-pawn or
improves piece activity without conceding material.
.

J

Figure 11: Sample of the Guided Synthetic data. Note that while the teacher model is provided with
a line and centipawn difference, the teacher model is still prone to hallucination (it cites a material
imbalance — this is not true). Additionally, despite prompting the teacher to use UCI notation, many
examples still use SAN due to teacher model bias.

The Verbalized Alpha-Beta Pruning dataset is an entirely programmatically generated dataset built
on top of Stockfish. This utilizes a program that does the following:

* For a given board, apply softmax with temperature sampling to choose initial move candi-
dates (based on Stockfish move valuations).

* For each candidate, recursively build a tree that employs a similar softmax-based sampling
algorithm.

* The recursion ends when a depth limit is reached, a max number of nodes are explored for
this move, or a move is "written off" (below a quality threshold compared to other lines).

* Upon creation of the full move tree, each tree is verbalized using a separate algorithm that
samples phrases from a large prompt bank to retain language diversity.

¢ The final winner (chosen via a minimax-based decision) is verbalized and used as the final
answer.

We chose to include board valuations as well as minimax scores at decision nodes to instill a sort of
value function (V'(s;)) in the model. Note that this value function is the absolute centipawn score
— not a delta; we chose this to allow for verbalized minimax decision making. Further we instill
several tree search strategies into the structure of the data — for example branching search, pruning,
and minimax decision making.

The Factual Board Answering dataset generates multiple simple question-answer pairs about board
states and combines them to ask multiple questions about the same board. Questions can ask about
the legality of a proposed move, the location of pieces, whether or not a player is in check, the
number of total legal moves available, and attacking piece information.

17

Verbalized Alpha-Beta Pruning Sample:

Assistant (SFT):

Interesting, let's consider some moves here.

<think> Ok, what if we played white queen moves to el (dlel) [v+605]?

| From here they'll likely consider black bishop moves to g7 (f8g7) [v-66].

| | Ok, then we could play white pawn moves to a4 (a3a4) [v-56].

| They could also consider black pawn moves to h5 (héh5) [v-71].

| | We could consider following with white knight moves to d5 (c3d5) [v-38].

| If the opponent played optimally, of the moves f8g7 and h6h5 they would likely choose
black bishop moves to g7 (f8g7) [mm-56] as this gives them the best position.

This position seems slightly better for the opponent [mm-56].

Let's think through white knight captures the pawn on e5 (f3e5) [v+787]. No, I don't like
this direction [mm-464].

How about we analyze the line starting with white rook moves to el (flel) [v+718]?

| A smart move from them could be black pawn moves to f5 (f6f5) [v+3].

| | We could consider following with white knight moves to d5 (c3d5) [v+4]. Instead we could
move white pawn captures the pawn on f5 (e4f5) [v+4]. Of all of these, we should play white
knight moves to d5 (c3d5) [mm+4].

The position after this appears essentially balanced [mm+4].

Our best move given how these would play out against optimal opponent play would be white
rook moves to el (flel). [mm+4] </think>

<answer> flel </answer>

\ J

Figure 12: Sample of Verbalized Alpha-Beta Pruning. This sample highlights branching, minimax
decision making, and an instance of pruning.

This dataset has the intention of training a model to explicitly learn piece and board dynamics in
its latent space, with the hope that this latent ability will translate to downstream reasoning perfor-
mance.

Factual Board Answering Sample:

User:

Here is a board in a game you're currently playing:
glr...k..r

7l pp.qb.p

6] ...p..pp

5| ..Qp .

4| .P.P.b

3] .. .B.

2l PP...P.N

1l R. . .R.K

ABCDEFGH

It is White’s turn to move.

Castling rights: Black can castle kingside, Black can castle queenside.
No en passant target square.

Halfmove clock: @

Fullmove number: 20

Answer the following - if multiple questions, include a space between each answer:

Can your bishop take their pawn {'Yes', 'No'}?

My piece on __ could take the opponent's pawn on d6 (answer with square of only piece that
makes this statement true -- e.g., 'e4').

Is the black king in check {'Yes', 'No'}?

How many legal moves does your queen at d5 have (answer with an integer)?

Can you legally play d5g2 {'Yes', 'No'}?

Can your knight take their bishop {'Yes', 'No'}?

Assistant (SFT):
‘Yes d5 No 14 No Yes

Figure 13: Sample of the Factual Board Answering dataset.

The Best Move dataset asks the model to, given a board state, predict the best move directly with
no chain of thought. This can be interpreted as learning a policy function (g (a:|s:)) via behavior
cloning where the best move is suggested by a chess engine. One drawback of training on this data
is that it can lead to very slow fine-tuning given each sample has 4 trainable tokens.

Our final dataset — Best Line — is similar to Best Move except this asks to provide the line of optimal
play (between 4 and 6 plies, chosen randomly to avoid a rigid structure), ending with a final estimate

18

of the centipawn delta from this line. This is similar to Guided Synthetic and can be interpreted as
verbalized n-step bootstrapping with n = 2 or 3 dependent on the number of total plies.

Our intent is that this will instill a form of a world model through learning both transition dynamics
and a value function. It can also be viewed as an extension of Best Move that condenses multiple op-
timal move data-points into a single sample — this is beneficial from a training efficiency perspective
as well.

Best Line Sample:

User:
{Visual (ASCII) board format}

What are the likely next 6 plies that would play out? List all moves in UCI notation (e.g.,
e4f6) separated by spaces. If a checkmate occurs, end with 'mate'. Otherwise, end with the
change in centipawns in the format '[A+/-#]'.

Assistant (SFT):
e8c8 f3d2 h5g6 dlel g6c2 d2c4 [A-21]
|\

N\

P
Best Move Sample:

User:
{visual (ASCII) board format}

Respond immediately with just the move in UCI notation (e.g. 'e2e4’) -- nothing else.

My question:
What is the best move?

Assistant (SFT):
\f4g2

Figure 14: Samples of Best Line and Best Move.

19

D Data inclusion analyses

First, we outline the various data inclusion analyses we ran. The purpose was to understand which
datasets were most effective to inform our final scaled experiments — see Appendix O for detail and
examples for each dataset. Figure [3 outlines our experiments, including the token distributions for
each dataset used in SFT. Our results (SFT and RL) on each data mix are included in Tables @ and D.

)
(\\Q
c;z"‘\\ S e
%\Q' ¢§' Q?é@ e“é\
&‘}\\(\ &‘}\\(\ o @ £
’b& ‘i‘l@é\ %é\ O o
'\6\ '\6\ ‘\\)&bq‘\ (}Q)db b@(\ @G&a '\é,J & @&
R Y e AT T T YIRS
¢ ¢ WAL LS GGG A0 48

Inclusion Experiments

SFT1 [RSPM] 2.50 - - - - - - 5.00 7.50
SFT2 [RSA] = 5.00 = - = - = 2.50 7.50
SFT3 [VABF] = 3.75 1.88 - = - = 1.88 7.50
SFT4 [FBA] - 375 - 1.88 - - - 1.88 7.50
SFT5 [GS] - 375 - - 1.88 - - 1.88 7.50
SFT6 [BM] - 3.75 - - - 1.88 - 1.88 7.50
SFT7 [BL] - 3.75 - - - - 1.88 1.88 7.50
SFT8 [BM - All] = 2.25 0.75 0.75 0.75 2.25 = 0.75 7.50
SFT9 [BL - All] = 2.25 0.75 0.75 0.75 - 2.25 0.75 7.50
Scaled Runs

SFT8 XL - 7.50 3.80 2.20 7.50 30.00 - 9.00 60.00
SFT9 XL - 7.00 3.50 4.00 7.50 - 30.00 8.00 60.00
SFT8 + SFT9 XL - 14 .50 7.30 6.20 15.00 30.00 30.00 17.00 120.00

Figure 15: Distribution of tokens used in each experiment. Token numbers are shown in millions;
we sampled our data to match this distribution, though there may be immaterial variations for actual
token counts used. We include tags (e.g., [VABP]) for mnemonic reference. Note that with the
Rejection Sampling (All Evals) [RSA] dataset, we allocate 50% of tokens to the Predict Move task
and sample the remainder from the other evaluation tasks. SFT8 + SFT9 XL was trained by taking
the SFT8 XL model checkpoint and training on the SFT9 XL dataset.

20

Table 1: Results are shown for the Predict Move evaluation on 400 samples. Predict Move Average
Rank is the average normalized rank (with 0 being the worst move and 1 being the best move per
Stockfish) of the legal moves provided in this task.

Pred. Move Pred. Move % Trivial®
Experiment SFT RL?
Name Train Samples % Legal 1 Avg. Rank 1 Moves |
Tokens | SFT RL | SFT RL | SFT RL |
Baselines
Qwen2.5 - - 8% 0.56 6%
7B-Instruct
Llama 4 - - 42% 0.62 1%
Maverick
gpt-0ss-120b - - 94% 0.66 2%
(Medium)
Inclusion Experiments
SFT1 [RSPM] I5sM 8k? 34% 82% 0.63 0.52 4% 55%
SFT2 [RSA] 15M 8k 37% 73% 0.63 0.60 5% 48%
SFT3 [VABP] 15M 8k 40% 67% 0.61 0.53 3% 46%
SFT4 [FBA] 15M 8k 44% T12% 0.59 0.54 3% 40%
SFTS [GS] 15SM 8k 36% T1% 0.60 0.54 3% 42%
SFT6 [BM] 15sM 8k 44% 93% 0.64 0.71 4% 31%
SFT7 [BL] 15M 8k 48% 85% 0.62 0.63 2% 64%
SFT8 [BM - All] 15M 8k 60% 90% 0.60 0.71 3% 14%
SFT9 [BL - All] 15M 8k 51% 89% 0.60 0.64 7% 32%
Scaled Runs
SFT8 XL 60M 16k 55% 98% 0.62 0.82 3% 12%
SFT9 XL 60M 16k 52% 93% 0.60 0.75 3% 25%
SFT8 + SFT9 XL° 120M 16k 54% 98% 0.58 0.83 2% 22%

* All experiments used equal portions of the four evaluation types for RL except SFT1 which trained on 8k
samples of only Predict Move.

® "Trivial Moves" consist of edge pawn moves (e.g., a2a4, a2a3) or king/rook wiggles (e.g., a1bi, bial).
These were chosen based on identified reward hacking behaviors.

¢ For this run we trained the SFT8 XL checkpoint with the SFT9 XL dataset.

21

Table 2: See Figure 3 for detail on the data included in each inclusion experiment and Table 0 for
performance on the Predict Move task. Each evaluation shown is based on 400 unique samples
for each task. The Legal Moves task asks the model to produce a list of legal moves given a target
piece — the score is measured as intersection over union (IoU) vs. ground truth. Best Move and
Worst Move ask the model to, given a list of 5 moves, choose the best (or worst, respectively) move
of the list — the incorrect candidates are sampled such that they are beyond a sufficient threshold of
difference per Stockfish. See Appendix B for examples of each task.

Experiment Legal Moves | Best Move | Worst Move | Ref’d Move | Avg. Reas.

%ame IoU + Acc. 1 Acc. 1 Acc.2t Quality"t
| SFT RL | SFT RL | SFT RL | SFT RL | SFT RL |

Baselines

Qwen2.5 0.26 19% 21% 12% 6.4

7B-Instruct

Llama 4 0.43 27% 31% 38% 6.6

Maverick

gpt-oss-120b 0.96 57% 79% 70% 7.0

(Medium)

Inclusion Experiments

SFT1 [RSPM] 026 0.17 | 23% 19% | 25% 23% | 33% 76% | 5.4 4.7

SFT2 [RSA] 037 044 | 29% 34% | 30% 48% | 35% S57% | 5.3 4.2

SFT3 [VABP] 041 058 | 25% 35% | 30% 48% | 34% 45% | 5.3 2.3

SFT4 [FBA] 049 058 | 26% 36% | 30% 51% | 39% 63% | 5.0 4.0

SFT5 [GS] 037 057 | 30% 35% | 29% 54% | 35% 52% | 5.3 6.1

SFT6 [BM] 042 066 | 29% 37% | 32% 45% | 41% 86% | 5.3 22

SFT7 [BL] 046 063 | 25% 28% | 32% S1% | 38% 68% | 5.0 2.4

SFT8 [BM - All] | 044 0.67 | 31% 41% | 34% 55% | 53% 80% | 5.7 2.9

SFT9 [BL - All] 040 059 | 29% 38% | 28% 53% | 44% 80% | 5.6 3.5

Scaled Runs

SFT8 XL 046 079 | 29% 60% | 33% 58% | 48% 83% | 5.7 22

SFT9 XL 047 075 | 28% 57% | 33% 62% | 48% 88% | 5.7 5.3

SFT8 + SFTOXL | 0.52 0.87 | 31% 62% | 31% 64% | 47% 90% | 5.8 53

* Referenced Move Accuracy is measured by using Llama 4 Maverick to parse reasoning outputs and create
a list of all moves that are mentioned by the model during the reasoning trace. These moves are then run
through a chess engine to determine what percent are legal as a measure of reasoning factuality. Appendix
B has further detail on measuring hallucinations.

® Average Reasoning Quality is measured by using gpt-oss-120b as a judge and is the simple average of
scores provided for Reasoning Efficacy, Reasoning Efficiency, and Reasoning Faithfulness. Further detail
is provided in Appendix 3 on measuring reasoning quality.

Note: This metric purposefully avoids measuring factuality — it is best to interpret this result alongside
the Referenced Move Accuracy as Qwen2.5 7B-Instruct may seem to have a strong reasoning score but is
incredibly prone to hallucination.

22

E Hallucinations

We use Llama 4 Maverick to parse reasoning traces from 400 Predict Move evaluation samples.
For each sample, the parsing generates two lists:

* Moves: This is a list of all moves referenced by the model in its reasoning trace played by
the player.

* Pieces: This is a list of tuples with (piecename, boardsquare) for all pieces that are
mentioned in reasoning.

These lists are then passed into a chess engine to determine the factuality of the listed moves and
pieces. Mean Total Reasoning Accuracy is computed as the sum of correct moves and correct pieces
divided by the total number of provided moves and pieces — hallucination rate can simply be com-
puted with (1 — Accuracy).

Note: This method may incorrectly penalize reasoning for listing future moves (e.g., play a2a4
followed by a4a5) or legal moves that the opponent may play. However, in review we found these to
be rare in occurrence.

Avg. Reference Accuracy (Total)

12 Baselines Inclusion Experiments Scaled Runs Baseline

SFT

mmm RL
- E _ Ey="nfil

08
04

02

Qwen2.5 Llama4 gpross-120b SFTL SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFTS SFT9 SFTSXL SFTOXL SFT&+
TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-All] [BL-All] SFT9 XL

Avg. Referenced Move Accuracy

Baselines Inclusion Experiments Scaled Runs
1
0.8
) l I I I
04 l | |
0.2
Qwen2.5 Llama4 gpt-oss-120b SFTL SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFTS SFT9 SFTSXL SFT9XL SFTS+
TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-Al] [BL-All] SFT9 XL

Avg. Referenced Piece Accuracy

Baselines Inclusion Experiments Scaled Runs

08 I [| — . - .
0.6
04

02

NN

Qwen2.5 Llama4 gptoss-120b SFTL SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFTS SFT9 SFTSXL SFT9XL SFT8+
TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] 1GS] [BM] [BL] [BM-All] [BL-All] SFT9 XL

Figure 16: Accuracy of tested models for both moves and pieces referenced in their reasoning traces.
Bars are overlaid directly on top of each other and stacking is not cumulative. Accuracy is computed
as the number of correct references divided by the total number of references. See Figure [3 for

detail on the data included in each experiment. Hatched lines are shown in cases where the SFT and
RL runs are within 2% of each other.

23

F Reasoning strategies

Figure 2 highlights the usage of various reasoning strategies across tested models. We follow from
Gandhiefall [2075] Zeng et all [2025] and also include two other strategies in Self-Correction (the
model explicitly corrects something stated previously) and Tree Search. See Figure I3 for detail on
the data included in each experiment.

Reasoning Strategy Usage: Self-Correction

02 Baselines : Inclusion Experiments I . Scaled Runs e Baseline
| I

015 = R
01 :
” . : I .
Qwen2.5 Llama4 gpt-oss-120b SFT1 SFT2 SFT3 SFT4 SFT5 SFT6 SFT7 SFT8 SFT9 SFTS XL SFT9XL SFT8+
7B-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [Gs] [BM] [BL] [BM-All] [BL-Al SFT9 XL

Reasoning Strategy Usage: Backtracking

Baselines { Inclusion Experiments Scaled Runs

04

02 [| —II-- .

Qwen25 Llama4 gptoss-120b SFT1 SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFT8 SFT9 SFT8XL SFTOXL SFTS+
TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-All] [BL- All] SFT9 XL

Reasoning Strategy Usage: Tree Search

; Baselines Inclusion Experiments Scaled Runs
B
= []
0.5
. . . l . .
— N - -
Qwen2.5 Llama4 gpt-oss-120b SFTI1 SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFT8 SFT9 SFT& XL SFT9XL SFTS+
7B-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-All] [BL-All SFT9 XL

Reasoning Strategy Usage: Verification

; Baselines Inclusion Experiments Scaled Runs
— ,] - []

075 %
05 /
025 . /
l Z

Qwen2.5 Llamad gpt-oss-120b SFT1 SFT2 SFT3 SFT4. SFTS SFT6 SFT7 SFTS8 SFT9 SFTSXL SFT9XL SFTS +

TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-All] [BL-All] SFT9 XL

Reasoning Strategy Usage: Subgoal Setting

Baselines Inclusion Experiments Scaled Runs

075
- I I I I I
025

= 00

Qwen2S Llama4 gptoss-120b SFTI SFT2 SFT4 SFTS SFT6 SFT7 SFT8 SFTSXL SFT9XL SFTS+
7B-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM-Al|] [BL All] SFT9 XL

AN\
SN\
AN\

Reasoning Strategy Usage: Enumeration

; Baselines Inclusion E/x/periments 7 S;}led Rul; 7
0.25 / /
7 / /%4éz

Figure 17: Usage rate of reasoning strategies on 400 Predict Move tasks. Bars are overlaid directly
on top of each other and stacking is not cumulative. Reasoning strategies are parsed using Llama 4
Scout and usage is measured as a binary flag for each evaluation sample. Hatched lines are shown
in cases where the SFT and RL runs are within 2% of each other.

24

G Reasoning quality

To analyze reasoning quality, we employ LLM-as-a-judge [2073] using gpt-oss-120b.
We prompt the model with the following — note that we do not ask the model to measure factuality
as we are interested purely in the quality of reasoning in a vacuum. Please refer to Appendix B for
detail on hallucination rates and see Figure [3 for detail on the data included in each experiment.

e 3\
Reasoning Quality Judge Instructions:
Your task is to be a critical judge.
You will be provided with a reasoning trace from a model, and your task is to produce a score for this
reasoning trace from 1-10 (int) that judges the following:
- Efficacy: Does the reasoning effectively lead the model to its final answer?
- Efficiency: Is the reasoning efficient and targeted?
- Faithfulness: How faithful is the final answer to previous reasoning -that is, is the final answer
the end of a logical chain or does it come as disconnected from the prior reasoning?
& J
Avg. Reasoning Quality (Total)
Baselines i Inclusion Experiments i Scaled Runs
10 Baseline
SFT
75
5 i :
: Iz snnill=
Qwen2.5 Llama4 gpt-oss-120b SFT1 SFT2 SFT3 SFT4 SFT5 SFT6 SFT7 SFT8 SFT9 SFT8§ XL SFT9 XL SFT8 +
TB-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] BM] [BL] [BM-All] [BL-All] SFT9 XL
Avg,. Reasoning Efficacy
8 Baselines Inclusion Experiments Scaled Runs
6 ||
4 I I
Qwen2.5 Llama 4 gpt-oss-120b SFT1 SFT2 SFT3 SFT4 SFT5 SFT6 SFT7 SFT8 SFT9 SFTS XL SFT9 XL SFTS +
7B-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] GS] [BM] [BL] [BM-All] [BL-All] SFT9 XL
Avg. Reasoning Efficiency
Baselines Inclusion Experiments Scaled Runs
6
4 ?
Qwen2.5 Llama4 gpt-oss-120b SFT1 SFT2 SFT3 SFT4 SFT5 SFT6 SFT7 SFT8 SFT9 SFTS XL SFT9 XL SFTS +
7B-Instruct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] GS] [BM] [BL] [BM-All] [BL-All] SFT9 XL

Avg. Reasoning Faithfulness

Baselines Inclusion Experiments Scaled Runs

’ |

2 [] I.I]

Qwen23 Llama4 gptoss-120b SFTI SFT2 SFT3 SFT4 SFTS SFT6 SFT7 SFTSXL SFT9XL SFT8+
7B-Instuct Maverick (Medium) [RSPM] [RSA] [VABP] [FBA] [GS] [BM] [BL] [BM All] [BL All] SFT9 XL

AN\

Figure 18: Reasoning quality scores on 400 Predict Move tasks. Bars are overlaid directly on top
of each other and stacking is not cumulative. Reasoning quality is scored by gpt-oss-120b and scores
are provided from 1 to 10. The Mean Reasoning Quality (Total) score is a simple average over the
three subcategories. Hatched lines are shown in cases where the SFT and RL runs are within 2% of
each other.

Additionally, we provide an example of unfaithful reasoning that earns a 1 out of 10 score on reason-
ing faithfulness. This sample is from our scaled Best Move - All final RL model.

25

Unfaithful Reasoning Example:

Assistant (SFT):

<think>

Now checking our possible moves according to standard algebraic notation
rules and translating them into UCI notation...

We have a few options like moving our king, utilizing our rooks, etc.

To start with, let's look at our king. One possible safe move would
be to take it to f2.

Moving our king requires careful consideration because it needs to be
mindful of both our king's safety and our general activity level.

With our king relatively placed, our focus shifts to using our rooks effectively.
One option could be activating our rooks.

</think>

<think>

\n\n

</think>

<answer>b2b3</answer>

Figure 19: Example of unfaithful reasoning — given a score of 1 in reasoning faithfulness. Output is
generated by the final RL model from our scaled Best Move - All experiment.

26

H SFT and RL hyperparameters

See Tables B and B for training hyperparameters.

All experiments were run on Nvidia A100 or H100 chips. The final scaled runs required approxi-
mately 500 H100 hours to complete.

Table 3: SFT training hyperparameters.

Parameter

Value

Training engine

Fine-tuning type

LR scheduler

Precision

Optimizer

Learning rate

Warmup ratio

Train batch size

Training data (tokens X epochs)

LlamaFactory [Zheng et all, 2024]

Full SFT

Cosine

BF16

AdamW [Coshchilov_and Hutfed, ZOT9]
3x107°

0.1

64

7.5mm X 2 (inclusion tests)

60mm x 1 (scaled runs)

Table 4: RL training hyperparameters.

Parameter

Value

Training engine

Objective

Learning rate

Train batch size

Max response length
Actor clip ratio (low/high)
Use KL loss

Rollouts per sample
Entropy coefficient
Number of samples

27

veRL [Sheng et all, PO75]

Dr. GRPO [Cinefall, P073)]
1x107°

64

3,000 tokens

0.20/0.28 [Yuetall, 2073]

False (off)

8

0 (off)

8,192 unique samples (inclusion tests)
16, 384 unique samples (scaled runs)

	Introduction
	Related work
	Reasoning in language models
	Reasoning through RL
	Chess engines

	Background
	Board and move representation
	Evaluations and RL environment
	Datasets
	Training environment

	Key findings
	Q1: How do different datasets impact downstream performance after SFT and RL?
	Q2: How does RL influence a model's qualitative behaviors?
	Q3: Which SFT-checkpoint metrics are predictive of final RL performance?

	Limitations & further discussion
	Conclusion
	Board format
	Evaluation samples
	Dataset types and samples
	Data inclusion analyses
	Hallucinations
	Reasoning strategies
	Reasoning quality
	SFT and RL hyperparameters

