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Abstract

The recent advancement of reasoning capabilities in language models has led to the
saturation of previously difficult evaluation tasks for frontier models. The release
of DeepSeek-R1 publicly demonstrated that verifiable domains such as code or
math naturally lend themselves toward eliciting strong reasoning capabilities. In
this paper, we attempt to extend reasoning to a novel verifiable domain: Chess.
We successfully test the efficacy of various board representations and attempt to
train a 1.5B and 7B parameter model through reinforcement learning to improve in
chess via reasoning. Following unsuccessful results from reinforcement learning,
we diagnose and identify weaknesses in our base models potentially serving as
a bottleneck to reasoning ability. Finally, we evaluate the capability of frontier
language models on chess to discover this domain remains difficult for even the
most capable models; we conclude that this remains a promising, interesting, and
plausible domain to further pursue.

1 Introduction

Chess has been a recurring grand challenge in the field of artificial intelligence, with notable mile-
stones such as IBM Deep Blue forcing reigning world champion Gary Kasparov to resign in 1996 and
the release of AlphaZero in 2017 Silver et al. [2017] – a neural architecture that achieved super-human
chess performance purely through self-play.

The importance of chess as a target can be attributable to the difficult nature of the game coupled
with clear, definable objectives; a hard, interesting problem well-suited for techniques developed in
artificial intelligence. Additionally, new techniques for ’solving’ chess remain interesting areas of
study. Despite superhuman capability from chess engines, AlphaZero learned a unique style of play
different from the flavor of leading chess engines – allowing AlphaZero to push human ability to
new heights and evolve the frontier of the game. During an interview following his victory in a 2019
chess tournament in Norway, world champion Magnus Carlsen attributed his evolution as a player to
AlphaZero:

“In essence, I have become a very different player in terms of style than I was a bit
earlier, and it has been a great ride.” Magnus Carlsen
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For these reasons, chess has been and will continue to be an interesting domain of study in the
development of artificial intelligence. New techniques that lend themselves to achieving superhuman
performance may teach humans to further evolve a game that has been studied for thousands of years.

The latest advancements in language models and reasoning models present an interesting new
direction to approach the study of chess from. Models that achieve superhuman performance in
coding OpenAI [2024] have only cracked the surface of chess with the capability of beating a player
making random moves Saplin [2024]. However, the application of reasoning models to chess – a
verifiable domain with clear rewards – presents a promising approach to this recurring grand challenge.
Their success could offer a new lens to study the game of chess through, potentially opening the black
box and granting us access to the reasoning behind the madness.

2 Related Work

Traditional chess engines like Stockfish operate using a variation of minimax search that involves
alpha-beta pruning of trajectories unreachable by players choosing to play optimally Maharaj et al.
[2022]. Per the Computer Chess 40/15 Rating List on March 14, 2025, Stockfish is currently the best
performing chess engine in the world with an ELO of 3,642 CCRL Team [2025].

AlphaZero takes a different approach, utilizing a bespoke neural architecture leveraging a stack of
grids representing the board state processed using both convolutional and linear layers Silver et al.
[2017]. At time of publication, AlphaZero was tested against the 2016 TCEC world-champion version
of Stockfish, winning or drawing every game played. MuZero further generalized the AlphaZero
architecture to remove requiring game rules and was able to match AlphaZero in ELO by the end of
training Schrittwieser et al. [2020].

Recent work from researchers at Google DeepMind tested the ability of a decoder-only transformer
architecture to learn to predict high-quality moves provided by top chess engine play. This transformer
was able to reach an ELO of 2,299 – validating the ability for large neural networks to amortize the
task of search within latent layers Ruoss et al. [2024].

These represent the state of the art of different techniques to chess: Chess engine, RL-guided search,
and neural-amortized search using transformers. However, a new technique has risen in the last year
that represents a novel way to scale performance of pretrained language models – reasoning – notably
popularized by OpenAI’s release of o1 OpenAI [2024] and DeepSeek’s release of R1 DeepSeek-AI
et al. [2025]. Additionally, Kimi released Kimi K1.5 further contributing to public understanding of
reasoning models that was notably advanced through R1 KimiTeam et al. [2025].

The releases from DeepSeek and Kimi unveiled the process of training a state of the art reasoning
model. Given a strong base model with capabilities in a verifiable domain (e.g., code, math), a
simple application of reinforcement learning via algorithms such as PPO Schulman et al. [2017] or
GRPO Shao et al. [2024] allows the underlying language model to learn long context reasoning on
harder tasks. Included in this is the ability to self-correct and backtrack, as well as stronger reasoning
patterns. Results from these techniques show an ability for these models to generalize reasoning to
new domains, with Anthropic showing improved performance of reasoning models on novel domains
such as Pokemon Anthropic Team [2025].

3 Dataset

Training an LLM to provide consistent high-quality moves in any setting requires a dataset that
comprises of a variety of board configurations, ranging from early game to late game. For this
reason, we selected to train on a subset of the Google DeepMind chess dataset Ruoss et al. [2024].
This dataset sources from random human-played games on lichess, a popular chess website, in
order to construct a diverse collection of board configurations. Specifically, the boards are given
in Forsyth–Edwards Notation (FEN), and each board comes paired with a list of legal moves and
associated win-probabilities of each move. These win probabilities are derived from Stockfish
evaluations of the board that results from playing each of the legal moves. The dataset contained far
more boards than was required for GRPO training, so we selected a random subset of 5000 entries
for training and 2000 entries for validation.
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(a) Original Chess Board

(b) Grid Representation

(c) Desc. Representation

(d) FEN Representation

Figure 1: Visualization of Chess Representations

4 Approach

4.1 Prompting

Many works such as Xu et al. [2025] have demonstrated that including information in the prompt
telling an LLM that it is an expert in the domain pertaining to the problem increased the overall
performance on that problem. We adopt this approach, contextualizing the LLM as a smart and
strategic player in a chess tournament. Due to the wide array of chess notation possible in the model’s
training dataset, we provide a one-shot example to aid in the model’s ability to provide moves in the
format our reward model expects. The full system prompts used, including the one-shot example, can
be found in the Appendix, but all system prompts followed the same basic format of:

You are a smart, strategic, and wise chess reasoning model
currently in a chess tournament.
Given a chess board and a list of legal moves you...

<One-shot example>

Make sure that your chosen move is provided in standard chess
bot notation
(e.g., g8f7, c2e1, g3g4) which means move the piece on the
first square to the second square
(so g8f7 means move the piece on g8 to f7).
Please use English for your thought process and make sure
your thinking isn’t too long, and if your final answer is not
enclosed in <answer> </answer> tags you will lose.

In testing we found that giving a brief explanation of the formatting expected for the moves in the
system prompt aided in the model’s ability to provide legal moves.

Given our limited resources and the model’s tendency to occasionally generate unreasonably long
reasoning traces, we induced a token generation limit during training. In order to help the model
spend more tokens reasoning through the strength of the moves rather than determining which move
is legal, we made the decision to provide a list of legal moves after the board representation. We later
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discuss how this contributed towards reward hacking, so we later removed the list of legal moves
from the prompt in further training runs. Each training data point used the same system prompt, with
the user prompt containing only the board from the dataset and, depending on the training run, a list
of the legal moves available for the board.

Category Number of Legal Moves Number of Illegal Moves Extraction Errors
FEN 36 29 33
Desc. 32 55 11
Grid 22 63 14

Table 1: Board Configuration Experimental Results

4.2 Board Respresentation

Again due to our limited computational budget, we designed and executed experiments in order
to determine the most promising board format to provide the model. The primary concern with
boards in FEN was that the tokenization of the LLM would often group adjacent characters, which
could have an adverse impact on the model’s ability to comprehend the board state properly (see
Appendix E). We tested FEN, a text grid representation, and an English descriptive representation.
Each representation can be seen in Figure 1.

All experiments to determine viability of board representations were tested on a DeepSeek-R1-Distill-
Qwen-1.5B model for 100 samples each, used the same system prompt, and contained a list of legal
moves in UCI notation. Samples where the model exceeded 100 seconds to provide an answer were
rare and discarded from the results, and in our experiments an Extraction Error is defined to be an
instance where the model failed to produce a move-like string between < answer >< /answer >
tags.

The results from these experiments in Table 1 allowed us to rule out the grid representation, as it
was outperformed by other representations in every metric. However, while the results seemed to
indicate that the FEN representation was the most comprehendible representation for the LLM, some
subjective analysis of the reasoning traces indicated that the model generally understood the dynamics
of the board better in the Desc. representation. For example, below is a sample from a reasoning
trace where the model was given the board in FEN and eventually suggested the best-available move:

First, let’s analyze each move: 1. **g3g2**: This means moving a pawn from g4
to g3 and then capturing the rook on e6 or d5 with its own pawn. . .

Upon inspection, it is clear that this reasoning is invalid and inconsistent with the rules of chess.
Meanwhile, below is a sample from a reasoning trace where the model was given a board in Desc.
format yet failed to produce valid answer tags:

3. The bishop from e7 to d8 or f6: This seems strategic as it can potentially capture
White’s pawns. . .

Here, the squares listed are valid squares the bishop can move to and the reasoning is also generally
valid.

While we acknowledge that these are only single examples and that generating concrete experiments to
quantify this behavior is difficult, inspection of the reasoning traces warranted further experimentation
in training on both FEN and Desc. board representations. Additionally, even with specifying the
desired format for representing a move, we found that on occasion the model would provide its move
in PGN notatation instead of UCI. For this reason, some training runs used PGN for the moves as
opposed to UCI in order to lean into this tendency. All training runs where the list of legal moves was
excluded from the prompt used PGN for the moves.

4.3 Reward Modeling

Given that the dataset provides a diverse set of board configurations, the win probability associated
with the best move for each board ranged from 0 to 1. For this reason, the rewards could not simply
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use the win probabilities, for they must properly consider the relative win probabilities of each legal
move. We identified three possible reward functions to consider this context.

First, we can simply normalize all of the win probabilities into a [0, 1] range by applying the following
formula to each move:

R(movei) =
wi − wmin

wmax − wmin

Here, wmin is the minimum win probability of all legal moves for the given board, and wmax is the
maximum win probability of all legal moves for the given board.

The second configuration takes the z-score of all of the win probabilities and then normalize these
z-scores into a [0, 1] range by applying a similar normalization formula. For the sake of completeness,
the formula for this reward model is given by:

R(movei) =
zscore(wi)− zscore(wmin)

zscore(wmax)− zscore(wmin)

Finally, the third reward configuration takes the z-score of each of the win probabilities and normalize
to fit in the same [0, 1] range, followed by setting all values less than a predetermined threshold to
0. This configuration has the added benefit of only giving rewards for "strong" moves should the
threshold hyperparameter be set appropriately. The larger the threshold, the stronger the move must
be in order to receive a reward. This comes with the added cost of more sparse rewards, and after
experimentation we found a threshold of 0.4 to be a reasonable middle-ground of extracting strong
moves yet still giving rewards to a not insignificant subset of the legal moves.

It should be noted that a select few entries of the dataset were such that all legal moves had a win
probability of 0. Although these entries were sparse, in order to limit the model seeing strong rewards
for irrelevant moves we somewhat arbitrarily assigned a reward of 0.5 for all legal moves in these
cases.

In some training runs, we also introduced a reward of 0.1 for the model providing < answer ><
/answer > tags, and a reward of −0.1 for not including such tags. This was done primarily in an
attempt to alleviate the issue of sparse rewards in the absence of having a list of legal moves provided
in the prompt.

The distribution of rewards over the dataset for the first and second configurations were nearly
identical, so unless otherwise specified the second reward configuration was the default setting we
chose.

4.4 Reasoning Loop via GRPO

Given the strong baseline ability of the DeepSeek-Distilled family of reasoning models DeepSeek-AI
et al. [2025] – notably the 1.5B and 7B variants – coupled with distillation on a proven set of
high-quality reasoning data, we decided to apply the GRPO-based DeepSeek-R1 reasoning loop
using our previously defined rewards.

JGRPO(θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

]
1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL

(
πθ||πref

))
,

DKL

(
πθ||πref

)
=

πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1.

In the experiments, we followed the hardware-efficient parameter choice of G = 1 as was shown
to be effective in the TinyZero implementation Pan et al. [2025]. The reference policy, πθold is the
initial model checkpoint downloaded from the Hugging Face Hub. Given a choice of G = 1, the
advantage Ai is simply our reward metric mentioned previously. We also set the KL-loss coefficient
β = 0.001. The clipping variable was set to ϵ = 0.2. We used default optimization settings for the
training engine we leveraged. All experiments used 8 as a default batch size except for the batch size
stability training experiment.
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4.5 Training Stack

We conducted full fine-tune experiments on DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-
Distill-Qwen-7B, leveraging Volcano Engine Reinforcement Learning ("verl"). verl is an open-source
version of HybridFlow Sheng et al. [2024].

For hardware we utilized rented GPUs from a combination of providers including Lambda Labs,
RunPod, and Vast ai. For the 1.5B experiments we utilized several different types of nodes: 2xA6000,
2xL40, 2xA10, and 1xA100. For the 7B experiments we utilized a node of 2xH100. Each experiment
hereafter discussed ran in less than 3 hours (wall-clock speed).

5 Results

5.1 1.5B Model

We conducted several experiments on the 1.5B model, with new experiments guided by shortcomings
of prior tests. Notably, we conducted the following 3 experiments – listing in chronological order:

• 1.5B Initial Prompt: 2-shot, FEN board with legal moves using normalized reward.
• 1.5B Clipped Reward: 1-shot, descriptive board with legal moves using clipped z-score

reward.
• 1.5B No Legal Moves: 1-shot, descriptive board without legal moves using regular z-score

reward. Additionally, for this we asked the model to return its desired move in PGN notation
as this format is likely most represented in pretraining data.

For the 1.5B Clipped Reward and 1.5B No Legal Moves experiments, we also included a 0.1
score penalty if the model failed to generate answer tags and a 0.1 positive reward if the model
provided a move in the desired format (not required to be legal).

Figure 2: Results from various tests on DeepSeek-R1-Distill-Qwen-1.5B. Solid line is computed as
running average over the prior 10 training steps. Results display clear sign of reward hacking as the
model learns to receive trivial formatting rewards and fails to reason through the board state.

Figure 2 displays the results of our various 1.5B tests. These results clearly portray reward hacking
as the model learns to trivially maximize return by following the desired formatting and does not
learn to reason over the board state. For the 1.5B Initial Prompt test, the model learns to predict
a single move from the set of legal moves – this provides an expected value of approximately 0.5
which reflects the asymptote of the graph. For the 1.5B Clipped Reward test, the model similarly
optimized to choosing a random move, which we hoped using the clipped z-score would prevent.
For the final 1.5B No Legal Moves test, the model learned to provide a move in the desired PGN
format to receive the guaranteed 0.1 reward. Appendix A further analyzes the reward hacking of the
1.5B model.

5.2 7B Model

Given results training on the 1.5B model, we decided to scale our experiment and test performance
on the 7B model. These experiments required much more expensive hardware, so we chose to only
test the No Legal Moves experiment. This utilized the same setup and reward as the 1.5B model.
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Figure 3: Results on scaling up to the 7B model. Solid line is computed as running average over the
prior 10 training steps. Results show the 7B model struggles with the same issues observed with the
1.5B model.

Unfortunately, Figure 3 displays the same issues in the 7B model as we observed with the 1.5B model.
However, the 7B model was able to learn this faster than the 1.5B model and was slightly better at
predicting some legal moves. This can be seen by the spikes above 0.1 that the 7B model achieved –
these spikes required choosing a legal move in the correct format.

Figure 4: Results on experimenting with batch size and training stability. The larger batch sizes
displayed more stable training as was predicted.

Given the 7B model was slightly more effective than the 1.5B model in these tests, we decided to run
one final experiment to test the impact of varying batch sizes with training stability. Figure 4 displays
the results of this experiment – the 7B model displayed more stable training and held a positive
reward for more training steps compared to the smaller batch sizes. We hoped that given the model’s
poor performance resulting in sparse rewards, larger batch sizes may allow the model to learn to
reason by avoiding local optima presented by the suboptimal reward hacked rewards. However, this
was not enough to allow the model to learn to reason properly.

6 Post-Mortem Analysis

6.1 Initial Qualitative Analysis

To better understand our results, we took a step back to consider the possible explanations for the
negative results. From a reward perspective, chess provides a verifiable domain assuming we define
Stockfish win probability as ground truth; given Stockfish displays superhuman performance in chess,
we believe this is a valid assumption not limiting our experiment.

Qualitative analysis of various responses from the base models displayed that the underlying cause
is likely tied to the ability of the base models – the base models were prone to hallucinating moves
and often failed to understand the full board positioning. Specific cases of model hallucinations are
covered in Appendix B.
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6.2 Ability of Our Base Models in Chess

Given the results of our initial qualitative analysis, we conducted an experiment to assess the capability
of our base models in predicting legal moves in chess. This experiment was designed to evaluate the
models’ fundamental understanding of chess rules and board representations.

Our methodology involved selecting a random piece from a chessboard in the test set and prompting
various base models to predict its available legal moves. We used the descriptive board format, as
preliminary tests showed it to be more comprehensible to the models. The evaluation loop was
designed to test multiple model variants (DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-
Qwen-7B, and DeepSeek-R1-Distill-Llama-8B) with this format, expecting move predictions in
Algebraic Notation (AN).

The results of our experiment are summarized in the following table:

Model % Legal Moves % Illegal Moves
DeepSeek-R1-Distill-Qwen-1.5B 17% 83%
DeepSeek-R1-Distill-Qwen-7B 38% 46%
Deepseek-R1-Distill-Llama-8b 54% 61%

Table 2: Performance of base models in predicting legal chess moves

The results in Table 2 indicate a clear trend of improvement with model size, yet even the largest
model struggles significantly with legal move prediction. Notably, the percentage of illegal moves
remains high across all models, suggesting persistent difficulties in understanding chess rules.

Our findings revealed that all the baseline models we tested demonstrated a significant lack of
capability in predicting legal moves. This deficiency was observed across all model sizes, indicating
that the issue is not solely related to model capacity. The primary reasons for these failures appear to
be:

• Hallucination: Models occasionally forgot the given board representation midway through
processing, leading to moves that were inconsistent with the board state or chess rules.

• Board representation errors: Models sometimes misinterpreted the initial board setup,
leading to incorrect understanding of piece positions and relationships, even before move
generation.

These results suggest that our base models, despite their general language understanding capabilities,
lack the specialized knowledge required for chess gameplay. This experiment highlights the need for
targeted training or fine-tuning approaches to improve base model performance in chess-related tasks.

6.3 Evaluation of Frontier Models

We also evaluated the chess-playing capabilities of state-of-the-art large language models by playing
them against Stockfish. The Stockfish engine was configured with an Elo rating of 1350 with a move
time of 10 milliseconds per turn. Each model played a full game as black against Stockfish, with
the board state provided to the model in the descriptive format. The performance of the models was
assessed using the centipawn evaluation score, which quantifies positional advantage or disadvantage
relative to the model after it makes a move. For example, a score of +100 centipawns relative to black
indicates that black is ahead by the equivalent of one pawn.

The following models were used in our evaluation:

• OpenAI GPT Series: 4o-mini, 4o, o3-mini, o1

• DeepSeek: DeepSeek-R1

• Anthropic Claude Series: Claude 3.5 Haiku, Claude 3.7 Sonnet, Claude 3.7 Sonnet with
Extended Thinking.

Figure 5 shows how the frontier models performed against Stockfish. The graph is noisy, because
each plot represents a single game between Stockfish and the LLM.
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Figure 5: Performance against Stockfish (ELO of 1350 with 10ms move time).

We observed that all models exhibited significant weaknesses in playing chess and often blunder
within the first few moves. However, models with explicit reasoning capabilities, such as o1 and
Claude 3.7 Sonnet with Extended Thinking, were able to prolong their play even though they made
critical mistakes early on in their games.

A recurring pattern observed across multiple models was an incomplete understanding of the position
of all pieces on the chessboard. Often, models would make moves that would be effective in a
standard board (e.g., develop your bishop to an open part of the board) – but the models fail to fully
contextualize the opposing pieces and blunder their piece. An example is provided in Appendix C of
a blunder made by o1.

This suggests that while frontier models grasp the general strategic principles of chess, they struggle
to integrate these strategies with concrete positional evaluation.

7 Conclusion

Chess remains a difficult domain for language models despite being a popular game with strong
representation online. We believe several factors are at play causing the poor results from language
models:

• Board Representation: Chess boards are 2-D which makes them difficult for textual
representation. Current formats such as FEN may lack efficacy due to tokenization issues,
and other common formats such as PGN notation do not capture the full state of the board.
As a result, chess data observed in pretraining may not be effectively compressed into latent
space.

• Difficulty: Effective chess playing requires search and extrapolation of several move
trajectories; while the results from Ruoss et al. [2024] showed the ability of a transformer
to reach grandmaster-level chess play, eliciting this level of performance from a general
language model requires breakthroughs in training reasoning models.

• Grid-Based Problems: Language models struggle in other grid-based domains such as
the ARC Prize Chollet [2019]. One argument for the poor performance of autoregressive
language models on this task is the large grid-based format not being well-suited for these
architectures.

Despite the negative results from this study, we believe that this remains an interesting and plausible
domain to further study. Despite the limitations of our base models, the 7B model did display superior
performance compared to the 1.5B model and generated non-trivial rewards more often.
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However, we believe what is required to bootstrap reasoning in chess is a stronger base model. This
likely requires tailored fine-tuning on a chess-reasoning textual dataset. Through this, we believe that
the increase in reward density may allow for a successful application of the reasoning feedback loop.

Understanding the capabilities of reasoning models in the domain of chess will unfold in due time.
If history repeats itself, these breakthroughs will only elevate human performance in this storied
domain, using artificial intelligence to augment and advance our own abilities.
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Appendix

A Additional Training Results: 1.5B

Figure 6: Format accuracy for the various 1.5B model tests.
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Figure 6 highlights the reward hacking observed in the 1.5B experiments. Format accuracy is defined differently
for each test but similarly involves the model providing valid answer tags (<answer> followed by </answer>)
and, for the tests providing legal moves, providing a legal move. Combined with the expected values of random
guesses explains the asymptotes of the mean score chart in Figure 2.

B Model Hallucinations

Figure 7: Example from the 7B model displaying inaccuracy to fully contextualize the board state.

Figure 7 highlights the inability of the 7B model to correctly understand that it already had a black pawn on b6,
making its proposed move illegal.

C Model Blunders

Figure 8: Example Blunder by o1

Figure 8, shows an example blunder made by state-of-the-art LLMs. Here o1 decides to move its bishop to c5,
however it doesn’t recognise that the bishop can easily be captured by White’s pawn on d4. Here is o1’s response
while it made the blunder:

<think> Black’s b7 pawn is eyed by White’s queen on b3, but simply
defending the pawn passively may yield White an edge in development.
A more dynamic continuation is to develop the dark-squared bishop
to c5. This pressures White’s center (particularly d4) and sets
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up tactical ideas if White becomes greedy and takes on b7 with the
queen, for instance by responding with ...Nxd4. So 1...Bf8c5 is a
solid developing move that addresses White’s threats and prepares
Black’s own play in the center. </think> <answer>f8c5</answer>

D Full System Prompt

Legal moves provided, FEN prompt

You are a smart, strategic, and wise chess reasoning model currently
in a chess tournament.
Given a chess board in Forsyth-Edwards Notation (FEN) and a list of
legal moves, you think through the various moves you can make and
reason about which move is the best. Then you provide your final
move back to the user based on your reasoning analysis.
The reasoning process and answer must be enclosed within <think>
</think> and <answer> </answer> tags, respectively. For example,
when given an input prefixed with "user:", your response should be
in the format "assistant: <think> [your reasoning] </think> <answer>
[chosen move] </answer>".
Below is an example of your desired behavior:
Example 1: user: <FEN> 7R/4n1k1/4P3/1pp2B2/8/6P1/2r4P/6K1 w - -
3 50 </FEN> <legal moves> [f5h7, h8h6, h2h4, h8g8, h2h3, g1f1,
f5d3, f5h3, h8b8, h8h4, h8c8, h8f8, h8a8, h8d8, f5g4, h8h3, g3g4,
g1h1, f5e4, h8h5, f5c2, h8e8, f5g6, h8h7] </legal moves> assistant:
<think> Playing as white, I’m in the offensive here. My rook is
currently in at risk of being taken by their king and my bishop is
at risk of being taken by their knight. I could take their rook
with their bishop but they would take my rook. However, if I move
my rook to h7, I’ll put their king in check while saving my rook and
bishop and continue pressure. Moving rook h8 to h7 is a wise move.
</think> <answer> h8h7 </answer>
Make sure that your chosen move is provided in standard chess bot
notation (e.g., g8f7, c2e1, g3g4) which means move the piece on the
first square to the second square (so g8f7 means move the piece on
g8 to f7). Please use English for your thought process and make
sure your thinking isn’t too long, and if your final answer is not
enclosed in <answer> </answer> tags you will lose.

Legal moves provided, Desc. prompt

You are a smart, strategic, and wise chess reasoning model currently
in a chess tournament.
Given a chess board and a list of legal moves, you think through
the various moves you can make and reason about which move is the
best. Then you provide your final move back to the user based on
your reasoning analysis.
The reasoning process and answer must be enclosed within <think>
</think> and <answer> </answer> tags, respectively. For example,
when given an input prefixed with "user:", your response should be
in the format "assistant: <think> [your reasoning] </think> <answer>
[chosen move] </answer>".
Below is an example of your desired behavior:
Example 1:
user: <board> White to move.
Black King on g7
Black Knight on e7
Black Pawns on b5, c5
Black Rook on c2
White Bishop on f5
White King on g1
White Pawns on e6, g3, h2
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White Rook on h8 </board>
<legal moves> [f5h7, h8h6, h2h4, h8g8, h2h3, g1f1, f5d3, f5h3, h8b8,
h8h4, h8c8, h8f8, h8a8, h8d8, f5g4, h8h3, g3g4, g1h1, f5e4, h8h5,
f5c2, h8e8, f5g6, h8h7] </legal moves>
assistant: <think> Playing as white, I’m in the offensive here.
My rook is currently in at risk of being taken by their king and
my bishop is at risk of being taken by their knight. I could take
their rook with their bishop but they would take my rook. However,
if I move my rook to h7, I’ll put their king in check while saving
my rook and bishop and continue pressure. Moving rook h8 to h7 is a
wise move. </think> <answer> h8h7 </answer>
Make sure that your chosen move is provided in standard chess bot
notation (e.g., g8f7, c2e1, g3g4) which means move the piece on the
first square to the second square (so g8f7 means move the piece on
g8 to f7). Please use English for your thought process and make
sure your thinking isn’t too long, and if your final answer is not
enclosed in <answer> </answer> tags you will lose.

No legal moves provided, Desc. prompt

You are a smart, strategic, and wise chess reasoning model currently
in a chess tournament.
Given a chess board, you think through the various moves you can
make and reason about which move is the best. Then you provide your
final move back to the user based on your reasoning analysis.
The reasoning process and answer must be enclosed within <think>
</think> and <answer> </answer> tags, respectively. For example,
when given an input prefixed with "user:", your response should be
in the format "assistant: <think> [your reasoning] </think> <answer>
[chosen move] </answer>".
Below is an example of your desired behavior:
Example 1:
user: <board> White to move.
Black King on g7
Black Knight on e7
Black Pawns on b5, c5
Black Rook on c2
White Bishop on f5
White King on g1
White Pawns on e6, g3, h2
White Rook on h8 </board>
assistant: <think> Playing as white, I’m in the offensive here.
My rook is currently in at risk of being taken by their king and
my bishop is at risk of being taken by their knight. I could take
their rook with their bishop but they would take my rook. However,
if I move my rook to h7, I’ll put their king in check while saving
my rook and bishop and continue pressure. Moving rook h8 to h7 is a
wise move. </think> <answer> Rh7 </answer>
Make sure that your chosen move is provided in standard PGN notation.
Please use English for your thought process and make sure your
thinking isn’t too long, and if your final answer is not enclosed
in <answer> </answer> tags you will lose.

E Tokenization Issues with FEN

Below is a sample FEN board from the training dataset. The highlighted characters indicate characters that are
grouped into a single token under the Qwen tokenizer.
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