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The ARC-AGI benchmark challenges machine learning systems to solve visual reasoning tasks that require
generalization beyond memorized patterns or large training datasets. This paper introduces a novel hybrid
approach combining neural and symbolic methods to address the unique challenges of ARC. We attempt
to use a vision transformer to encode ARC problems into dense embeddings, guiding a custom A* search
over transformations defined in a domain-specific language. To represent ARC tasks more effectively, we
propose an object-centric approach, where input and output grids are decomposed into ARC-objects with
structured attributes. Despite having limitations, our approach solves four public evaluation cases from the
ARC dataset, demonstrating an early proof-of-concept for an object-centric approach and paving the way for
further experimentation to enable full neural guided search.
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1 INTRODUCTION
The ARC-AGI benchmark (ARC)[3] was created to measure machine intelligence. It is composed of
visual reasoning questions that include two to seven input-output examples followed by a single
test input – the goal is to correctly generate the test output. The benchmark has a goal of 85%,
at which the challenge is deemed to be ’solved’. While many deep learning-based models have
excelled at various other benchmarks, they continue to struggle with ARC for several reasons:

• Due to the novel nature of every problem, it is infeasible to simply memorize solutions.
• Deep learning is sample inefficient – ARC requires the ability to learn from a small handful
of examples.

• The answer must be entirely correct requiring full precision.
These challenges highlight the difference between excelling at one trained task versus composing

existing priors to solve unseen problems. The former is skill, the latter is intelligence.

Fig. 1. Example of an ARC problem. The transformation requires connecting blue dots with a blue line and
drawing a perpendicular pink line if there is a pink dot in the way.

Inspired by AlphaGo[15], we seek to combine deep learning methods with search, specifically pro-
gram synthesis. Our approach segments broader images into ’ARC objects’, which will be encoded
∗Authors contributed equally to the paper

Authors’ address: Vicki Li, v8li@ucsd.edu; Pawan Jayakumar, pjayakumar@ucsd.edu; Lucas Dionisopoulos, ldionisopoulos@
ucsd.edu, UC San Diego, USA.



2 Vicki Li, Pawan Jayakumar, and Lucas Dionisopoulos

Fig. 2. Diagram of our proposed method.

Fig. 3. Results of current enterprise LLMs on ARC. Note that icecuber 2020 has a large gap between public
and private eval, highlighting the difficulty of generalizing DSL based approaches.

as dense embedding vectors. These will be used to compute a distribution over a domain-specific
language (DSL) that defines our program space, which we will then search over using A* search.
While promising, our implementation has limitations due to the difficulty of learning a rich embed-
ding model. However, our solution is still able to solve 4/400 public validation test cases, supplying
a proof-of-concept to our object-centric approach that encourages further experimentation.

2 RELATEDWORK
Creating a DSL to describe the structure of ARC solutions[9][16] gives search methods an inductive
bias toward what transformations are likely. However, it is non-trivial to design an effective DSL
that enables shallow depth solutions to all ARC problems. The immense problem novelty and
combinatorial explosion of search presents a significant hurdle to the inductive program synthesis
technique.

Current state-of-the-art solutions leverage pre-trained LLMs, and two common techniques have
recently demonstrated efficacy. First, some approaches seek to fine-tune the LLM at test time on
ARC problems[1]. By leveraging synthetic data, there is ample data to perform test-time-training –
which is a powerful alternative to existing techniques such as chain-of-thought sampling[17]. The
second common LLM approach requires significant sampling of LLMs for programs[7], typically
in Python. The LLMs generate programs until a valid solution is generated or a compute limit is
reached – yielding strong results but significant costs.
While ARC problems are ultimately reduced to JSON files, they are better presented to LLMs

in other ways. Humans view these problems as visual transformations and invoke ideas such as
translation, symmetry, or color. Other approaches[12] propose adding object positional embeddings



Neural Guided A* Search for the ARC-AGI Benchmark 3

to embed the concept of objectness into neural representations of ARC problems. Another technique
adopted a similar object-centric method, although it did not use vision models[6].
Ultimately, none of these works have solved the core challenge of ARC which is automating

skill acquisition. Each requires expert domain knowledge to be incorporated into the solution,
producing bespoke solutions that are less likely to transfer to more open-ended or challenging
domains such as automated theorem proving.

3 DSL AND SEGMENTATION
3.1 DSL
Our DSL has nine operations: Color, recolor, rotate, flip, delete, translate, single copy, copy translate,
and draw line. While being relatively concise, these operations were designed to be general and
effective when applied at the object level. Additionally, a small DSL creates a more tractable program
synthesis problem, which further motivated concision.

3.2 ARC-Objects
Our approach treats ARC problems not as a pair of input-output grids, but instead as input and
output ARC-object sets. Our custom ARC-object data structure consists of the mask of the pixels
which comprise the object, the position (top-left corner of the bounding box of the mask) of the
object in the original grid, and the height and width of the object.

An object-based method provides several advantages:
• Simplicity: It is easier to describe transformations on objects rather than specific pixels on
a grid.

• Modularity: All DSL operations are applied on an ARC-object, with some requiring addi-
tional constants, and return the transformed ARC-object. This allows us to chain operations
and ensure our program remains well-typed.

• Feature Abstraction: An object-centric approach makes it easy to extract meaningful
features such as color, shape, and position.

Fig. 4. Different segmentation results on same input image

3.3 Object Segmentation
We defined three methods to segment the input grids into objects, utilizing the OpenCV library to
detect contour lines in a grid. The differences can be seen in Figure 4.

(1) Color: Treat all pixels of the same color in a grid as one object. The pixels do not have to
be connected. Thus, an object can contain several disconnected parts.
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(2) Contour-Scale: First convert the ARC grid into gray scale, scaling pixel values with respect
to ascending pixel frequency. This generalizes the concept of a ’background color’ and
extracts distinct objects (potentially multi-colored) that are separated in the grid.

(3) Monochrome Contour: Combines the constraints of color and contour. All pixels in an
object must be connected and of the same color.

In practice we execute all three in parallel as each is effective in various settings. Further work may
provide an effective way to choose one segmentation method.

4 ENCODING
In order to generate effective heuristics for our search method, we needed some way to produce
a numerical representation of the current problem state. Two common approaches to training
meaningful embeddings are to use hand-designed embeddings or to use a learned embedding model.
We chose the latter approach due to task complexity and for generality.

We had hoped a performative open-source embeddingmodel such as ResNet[8] andMobileNet[13]
could have provided embeddings, but common practice in training image classification models
involves using data augmentations to impose robustness against color, rotation, size, and posi-
tion within the image[2]. This is not ideal as we want our encoder to be sensitive towards these
characteristics. Additionally, these models are trained on common image classification tasks that
are different from ARC challenge problems, and the large internal dimensionality of these models
imposes significant computational constraints for downstream tasks.
For these reasons, we chose to pre-train a task-specific ARC-object embedding model that

converts an ARC-object into a semantically meaningful vector.

4.1 Architecture
We leveraged the vision transformer architecture with a class token to extract embeddings[4]. For
our objective function, we trained using a modified iBOT objective that leveraged a student network
and a teacher network with a small masking probability (𝑝 = 0.1) [18]. Inputs were provided as
a batch of problems (each image padded to 32 x 32) and the model was tasked with minimizing
cross-entropy loss comparing the class tokens from the student network to the teacher network.

We used an embedding dimension of 64, 2-D sinusoidal positional encodings, 8 attention heads,
transformer depth of 10, and an MLP hidden ratio of 128, which resulted in approximately 400𝑘
parameters. The model was trained over 4 hours on an NVIDIA A6000 GPU.

4.2 Synthetic Data
To facilitate learning relevant representations, we created a pipeline to generate synthetic data using
our DSL. Many state-of-the-art ARC solvers utilize synthetic data generators such as RE-ARC[10]
for the ability to extend the limited training set size. Using a synthetic data generator not only
allows us to generate significantly more training data than is provided, but it also allows us to bias
our model toward learning representations that distinguish our specific DSL transformations.

Examples of our synthetic data generator and scaling behavior are provided in Appendix A. We
exhibited log-linear loss improvement when using our synthetic data. Notably, we were able to
train on 20𝑘 training steps (approximately 200𝑘 samples) – which would have required around 100
epochs if using the provided ARC training samples. This would have posed a much higher risk
of over-fitting compared to our synthetic generation regime, where we only needed 20 epoch to
generate this number of samples. Additionally, the log-linear improvement in loss exhibited adds
credibility that our synthetic data generation is generating useful samples – allowing the model to
continue to improve on the task.
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Fig. 5. (a) Top: Plot of attention logits for the class token in the first transformer layer across the 8 attention
heads. (b) Bottom: The result of cosine similarity search over 1,000 randomly sampled ARC grids.

4.3 Cosine Similarity Evaluation
As an intermediate evaluation for our representation model, we conducted qualitative tests using
cosine similarity and visualization of our attention mechanism. Several methods were tried to
quantify this performance, but we believed they were ineffective at separating signal from noise.
Figure 5 displays the results from our cosine similarity evaluation. These results showed that

the image encoder was learning useful representations – able to discern elements such as sparsity,
color, and positioning.

4.4 Training a Probabilistic Grammar and A-Star
Given the combinatorial challenge of program synthesis, we need to train a probabilistic grammar to
allow our search to be biased toward useful solutions – taking an approach similar to Euphony[11].
To do so, we proposed using an encoder-based model with two task-specific tokens. Appendix B
includes an overview of the proposed architecture.
However, in doing so, we found that the model could only learn trivial representations that

matched the underlying distribution. This could be due to several different reasons, but most likely
it is caused by our embeddings lacking a rich representation to allow the model to learn a nontrivial
distribution given the state. This remains an open problem that is a promising subject for future
work.
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5 OBJECT GRAPH
5.1 Motivation
Several of our DSL functions require extra arguments beyond the object itself. For example, translate
requires the end coordinates of the translation. While enumerating possible arguments, it is
important that 1) they generalize to other test examples and 2) do not use information specific to
the output grid for a particular example as this information is not available for the test example.
Effectively, finding these arguments is its own synthesis problem, which we solve using constraints.
We make the assumption that these arguments are some function of the properties and relations
between input objects and output objects.

5.2 Construction
Since ARC problems decompose into a set of input and output objects, we can create a graph where
the nodes are the objects and edges are properties two objects share such as shape or color. We
observe that many ARC problems have input objects that are modified but can still be recognized
in the output grid based on some invariant property. For example in Figure 6 we observe that the
shape and color of each object does not change. We can use this information to create a mapping
between the set of input and output objects. This mapping can also be constructed between input
objects across examples. Using these mappings, we can determine what properties are important,
and further refine our search to figure out the exact expression. For example in Figure 6 we observe
that only the y-coordinate of each object changes, and that they ultimately match the y-coordinate
of the blue object.

Fig. 6. Classic translation problem: The system must determine that the red and yellow objects must be
translated to match the y-coordinate of the blue object.

6 RESULTS
We managed to solve 16 of 400 train problems and 4 of 400 evaluation problems in the ARC Prize
dataset, using a simplified version of the object representation graph. The simplified version relieves
most of the constraints on the strict input to output object mapping, and instead only focuses on
the generalized feature comparison between all input objects and all output objects. Training and
evaluation does not apply for this method, hence these can be simply interpreted as easy and hard
problems: The training set typically contains problems that can be solved in as few as one or two
transformations, while evaluation problems require longer chains of operations and much more
complicated feature extraction. Examples of solved problems can be found in Appendix C.
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7 CONCLUSION AND FURTHERWORK
While the initial goal of tackling the ARC-AGI benchmark with a neural-guided program synthesis
approach over the object domain was unsuccessful, this has opened several promising directions
for further research.

The ability to solve ARC problems using our object-level DSL and the object graph has provided
a proof-of-concept that this technique can be effective. The DSL was specifically designed to allow
us to solve the majority of ARC problems when applied properly on the correct ARC object.
From here, there are several improvements that could be made in all elements of the system.

What remains most promising is full neural-guided search, ideally proving our belief that you can
effective generalize ARC solutions to new tasks by a neurosymbolic approach. From here, further
work could seek to allow the system to generate its own DSL, bootstrapping the embedding model
and probabilistic grammar with each new addition – similar to the approach in DreamCoder[5].
Further, taking inspiration from MuZero [14], building a full end-to-end system to allow for an
’agential’ approach to solving tasks with minimal external imposed bias remains a grand challenge
that could allow an ARC solution to generalize to open-ended domains.
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APPENDIX
A SYNTHETIC DATA GENERATION EXAMPLES

Fig. 7. Synthetic data examples
at 𝑑𝑒𝑝𝑡ℎ = 2.

Samples from the synthetic data generator using a program depth
of 2. Program depth is an adjustable argument – this allowed the
use of curriculum learning during training to train on increasingly
difficult (i.e., shallower) transformations.

At each step, we choose to apply our transformation at the image
level or at the object level (via random choice). Transformations
available at the image level include recolor, rotation, and flip; at
the object level, we allow for these along with translation, copying,
and draw-line.
Throughout the synthetic generation, objects are tested for ob-

servational equivalence with past generations. For example, gener-
ating ’rotate’ four times would result in a trivial transformation at
depth 4. When an observational equivalence is detected, the inter-
mediate transformations are discarded and the synthetic generation
is continued until the desired depth is reached.

Fig. 8. Training loss using synthetic data displays a log-linear relationship with respect to training steps,
highlighting that the synthetic data being generated is useful for continued improvement on the task.

B PROBABILISTIC GRAMMAR ENCODER

Fig. 9. Attempted architecture for the
probabilistic grammar.

The attempted architecture for our probabilistic grammar en-
coder sought to leverage an encoder-only transformer model
with two task-specific tokens. The first token would be used
to predict the DSL function given the current state and de-
sired goal state. After applying softmax on this prediction, we
would have a probability distribution over our grammar that
we could use for our search algorithm.

The second task token would not be directly used, but rather
the attention in the last layer of the encoder would be used to
generate a probability distribution over which ARC objects to
apply our DSL function to. We believed that in order to predict
the correct DSL function, theremust also be information across
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which object to apply that function to – this was our attempt
at capturing that information.

Unfortunately, neither task was successful in tandem or on
its own. This is an area for further study.

C SOLVED ARC TASKS
Figure 10 shows the four evaluation problemswe solved. These problems are of moderate complexity,
and the solutions involve a chain of operations. Taking the problem on the top-right corner as
example, the final solution our program produced is to first segment the grid by color, flip each
object, and finally flatten the list back to one grid, drawing the transformed objects to their original
positions.

Fig. 10. ARC problems solved in the evaluation set.
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